Abstract

A simple network representation is given for a stack of thin, homogeneous piezoelectric plates, executing a single thickness mode of motion. All plates may differ in thickness and material properties, including dielectric loss, ohmic conductivity, and viscous loss. Each plate is driven by a thickness-directed electric field, and all stack elements are connected electrically in series. Functionally gradient single plates and composites are readily modeled by the network, to a desired precision, using a sequence of circuit elements representing stepwise variations in material properties and layer thicknesses. Simulations of RAINBOW (reduced and internally biased oxide wafer) ceramics are given.

Department(s)

Mechanical and Aerospace Engineering

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2001 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.

Full Text Link

Share

 
COinS