Vertical Machining Center Accuracy Characterization Using Laser Interferometer: Part 1. Linear Positional Errors


This paper presents the results of accuracy characterization of a Vertical Machining Center (VMC) in the form of linear errors and temperature variation using a low powered He-Ne laser (Renishaw®) calibration system along with environmental controller unit. The machine investigated is Cincinnati Milacron Sabre 750 three axes CNC VMC with Acramatic 2100 CNC open architecture controller. Temperature distribution of the machine was measured using three temperature sensors strategically attached to predetermined locations on each axis guides. The accuracy of the VMC is characterized in the form of geometric and thermal errors as a function of machine tool nominal axis position, temperature distribution and environmental effect (air temperature, air pressure and relative humidity). Results show that axis drive motors are the major heat sources. Linear positional accuracy is best when the machine is in cold condition and deteriorates with increasing machine operation time for all three axes. X-axis had worst linear displacement accuracy and maximum reversal errors among the three axes being tested.


Mechanical and Aerospace Engineering


National Science Foundation (U.S.)

Keywords and Phrases

CNC Machine Tool Accuracy; Error Modeling; Error Prediction; Thermal and Geometrical Errors; Laser interferometers

Document Type

Article - Journal

Document Version


File Type





© 2000 Elsevier, All rights reserved.