Title

Exact Expressions for Radiative Transfer in a Three-Dimensional Rectangular Geometry

Abstract

The equations for the source function, flux, and scattered intensity normal to the surface are formulated in cartesian coordinates for a 3-D rectangular absorbing, emitting, isotropically scattering medium exposed to both diffuse and collimated radiation. Simplifications of these equations for certain important geometries and uniform loading are presented. Also, superposition of these equations and radiative equilibrium are discussed. For pure scattering, the source function at the center of the square and cubic geometries is analytically determined for the diffuse boundary condition. The generalized 3-D equations are shown to reduce to the familiar 1-D results. Also, the equations for a strongly anisotropic phase function which is made up of a spike in the forward direction superimposed on an otherwise isotropic phase function are expressed in terms of the isotropic expressions. © 1982.

Department(s)

Mechanical and Aerospace Engineering

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 1982 Elsevier, All rights reserved.

Share

 
COinS