Approximate Dynamic Programming Solutions with a Single Network Adaptive Critic for a Class of Nonlinear Systems


Approximate dynamic programming (ADP) formulation implemented with an adaptive critic (AC)-based neural network (NN) structure has evolved as a powerful technique for solving the Hamilton-Jacobi-Bellman (HJB) equations. As interest in ADP and the AC solutions are escalating with time, there is a dire need to consider possible enabling factors for their implementations. A typical AC structure consists of two interacting NNs, which is computationally expensive. In this paper, a new architecture, called the “cost-function-based single network adaptive critic (J-SNAC)” is presented, which eliminates one of the networks in a typical AC structure. This approach is applicable to a wide class of nonlinear systems in engineering. In order to demonstrate the benefits and the control synthesis with the J-SNAC, two problems have been solved with the AC and the J-SNAC approaches. Results are presented, which show savings of about 50% of the computational costs by J-SNAC while having the same accuracy levels of the dual network structure in solving for optimal control. Furthermore, convergence of the J-SNAC iterations, which reduces to a least-squares problem, is discussed; for linear systems, the iterative process is shown to reduce to solving the familiar algebraic Ricatti equation. © 2011 South China University of Technology, Academy of Mathematics and Systems Science, Chinese Academy of Sciences and Springer Verlag Berlin Heidelberg.


Mechanical and Aerospace Engineering

Document Type

Article - Journal

Document Version


File Type





© 2011 Springer Verlag, All rights reserved.