A Fracture Mechanics Model for Laminated Glass Subjected to Blast Loading


A failure criterion based on energy balance approach is introduced for the laminated glass panel subjected to blast loading. Based on this failure criterion, a damage factor is developed to assess the failure of the laminated glass panel. If the damage factor is less than one, the plate is safe otherwise unsafe. Trigonometric function is employed to express the transverse deflection and the Airy's stress function in von Karman's large deflection equations of a thin plate. The nonlinear ordinary differential equation of motion obtained using the Galerkin method is solved using Runge-Kutta method. The predicted results indicate that the breakages of the laminated glass may be caused by the negative phase of the blast load if the positive phase blast load is not violent enough to cause failure. Also, the size of glass shards the laminated glass plies breaks in to is predicted using the surface energy based failure model.


Mechanical and Aerospace Engineering

Keywords and Phrases

Blast Load; Energy Balance; Geometric Nonlinearity; Laminated Glass; Linear Viscoelasticity

Document Type

Article - Journal

Document Version


File Type





© 2005 Elsevier Masson, All rights reserved.