The Effect of Matrix Microstructure on Cyclic Response and Fatigue Behavior of Particle-reinforced 2219 Aluminum Part II

Alternative Title

Behavior at 150 °C

Abstract

The 150 °C cyclic response of peak-aged and overaged 2219/TiC/15p and 2219 Al was examined using fully reversed plastic strain-controlled testing. The cyclic response of peak-aged and overaged particle-reinforced materials showed extensive cyclic softening. This softening began at the commencement of cycling and continued until failure. At a plastic strain below 5 × 103, the unreinforced materials did not show evidence of cyclic softening until approximately 30 pct of the life was consumed. In addition, the degree of cyclic softening (†σ) was significantly lower in the unreinforced microstructures. The cyclic softening in both reinforced and unreinforced materials was attributed to the decomposition of the θ′ strengthening precipitates. The extent of the precipitate decomposition was much greater in the composite materials due to the increased levels of local plastic strain in the matrix caused by constrained deformation near the TiC particles. © 1995 The Minerals, Metals & Material Society.

Department(s)

Materials Science and Engineering

International Standard Serial Number (ISSN)

1073-5623

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 1995 ASM International, All rights reserved.

Publication Date

01 Jan 1995

Share

 
COinS