Mechanical Properties Dependence on Microstructures of Hot Rolled 3ʳᵈ Generation Advanced High Strength Steels

Abstract

Three lightweight steels with densities between 7.3 and 7.5 g/cm3 met property goals for third generation advanced high strength steels. Plates were cast, homogenized, and hot rolled to produce a prior austenite grain size of 50 μm. These steels consisted of microstructures of δ-ferrite, bainitic ferrite, and retained austenite. First principles calculations were used to determine defect structures and phase stability. The compositions of the alloys were formulated using phase equilibrium modeling and stacking fault energy calculations. The composition in weight percentage of the alloys ranged from 0.1 to 0.2% C, 13.5 to 13.9% Mn, 3.4 to 4.5% Al, and 1.3 to 2.1% Si. This range of compositions produced alloys with calculated stacking fault energies between 26 mJ/m2 and 35 mJ/m2. The alloys exhibited transformation induced plasticity during tensile testing with tensile strengths between 865 and 974 MPa with necking strains up to 39%.

Meeting Name

Materials Science & Technology Conference and Exhibition 2010 (2010: Oct. 17-21, Houston, TX)

Department(s)

Materials Science and Engineering

Document Type

Article - Conference proceedings

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2010 ASM International, All rights reserved.

Publication Date

01 Jan 2010

This document is currently not available here.

Share

 
COinS