Location

San Diego, California

Presentation Date

29 May 2010, 8:00 am - 9:30 am

Abstract

Displacement design response spectrum is an essential component for the currently-developing displacement-based seismic design and assessment procedures. This paper proposes a new and simple method for constructing displacement design response spectra on soft soil sites. The method takes into account modifications of the seismic waves by the soil layers, giving due considerations to factors such as the level of bedrock shaking, material non-linearity, seismic impedance contrast at the interface between soil and bedrock, and plasticity of the soil layers. The model is particularly suited to applications in regions with a paucity of recorded strong ground motion data, from which empirical models cannot be reliably developed.

Department(s)

Civil, Architectural and Environmental Engineering

Meeting Name

5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics

Publisher

Missouri University of Science and Technology

Document Version

Final Version

Rights

© 2010 Missouri University of Science and Technology, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Document Type

Article - Conference proceedings

File Type

text

Language

English

Share

COinS
 
May 24th, 12:00 AM May 29th, 12:00 AM

Displacement Design Spectrum Model Accounting for Non-Linear Site Effects

San Diego, California

Displacement design response spectrum is an essential component for the currently-developing displacement-based seismic design and assessment procedures. This paper proposes a new and simple method for constructing displacement design response spectra on soft soil sites. The method takes into account modifications of the seismic waves by the soil layers, giving due considerations to factors such as the level of bedrock shaking, material non-linearity, seismic impedance contrast at the interface between soil and bedrock, and plasticity of the soil layers. The model is particularly suited to applications in regions with a paucity of recorded strong ground motion data, from which empirical models cannot be reliably developed.