Location

St. Louis, Missouri

Presentation Date

13 Mar 1991, 5:00 pm - 5:30 pm

Abstract

The Loma Prieta Earthquake of October 17, 1989 was the most costly single natural disaster in U.S. history, resulting in losses of $7 to $9 billion, and claiming 63 lives. These damages were concentrated mainly at a number of distinct sites comprising a relatively small fraction of the affected region, as local site conditions and related geotechnical factors exerted a major influence on damage patterns and loss of life in this catastrophic event. This paper discusses one of these geotechnical factors, the widespread occurrence of soil liquefaction during the earthquake, as well as the associated damages and the resulting lessons learned. Additional significant geotechnical factors which exerted a strong influence on damage patterns during this event, including site-dependent dynamic response and seismically-induced slope instability, are discussed in companion papers in these proceedings.

Department(s)

Civil, Architectural and Environmental Engineering

Meeting Name

2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics

Publisher

University of Missouri--Rolla

Document Version

Final Version

Rights

© 1991 University of Missouri--Rolla, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Document Type

Article - Conference proceedings

File Type

text

Language

English

Share

COinS
 
Mar 11th, 12:00 AM Mar 15th, 12:00 AM

Liquefaction of Soils in the 1989 Loma Prieta Earthquake

St. Louis, Missouri

The Loma Prieta Earthquake of October 17, 1989 was the most costly single natural disaster in U.S. history, resulting in losses of $7 to $9 billion, and claiming 63 lives. These damages were concentrated mainly at a number of distinct sites comprising a relatively small fraction of the affected region, as local site conditions and related geotechnical factors exerted a major influence on damage patterns and loss of life in this catastrophic event. This paper discusses one of these geotechnical factors, the widespread occurrence of soil liquefaction during the earthquake, as well as the associated damages and the resulting lessons learned. Additional significant geotechnical factors which exerted a strong influence on damage patterns during this event, including site-dependent dynamic response and seismically-induced slope instability, are discussed in companion papers in these proceedings.