Location

Arlington, Virginia

Session Start Date

8-11-2008

Session End Date

8-16-2008

Abstract

Ground improvements often aim to reduce settlement risks for foundations and this requires reliable methods of prediction. Current approaches are based on empirical procedures and methods developed over 30 years ago. This has resulted historically in designs and installations of unnecessarily sophisticated foundations. In addition many developments now encountered by ground improvement contractors involve previously developed or ‘brownfield’ sites made up of heterogeneous and variable made ground. Methods to predict settlements traditionally use destructive and invasive approaches such as SPT or CPT that can be insensitive to time dependent changes, which often occur when brownfield sites are improved. By comparison geophysical methods are both non-invasive and non-destructive. One such technique that has demonstrated considerable promise is that of continuous surface wave determinations, which allows stiffness depth profiles to be obtained in a cost effective way. A recently developed method to determine settlements from these data has shown through four case studies presented in this paper to accurately predict settlements measured from zone tests. Thus offers a potentially more reliable way to predict settlement profiles than traditionally used methods.

Department(s)

Civil, Architectural and Environmental Engineering

Appears In

International Conference on Case Histories in Geotechnical Engineering

Meeting Name

Sixth Conference

Publisher

Missouri University of Science and Technology

Publication Date

8-11-2008

Document Version

Final Version

Rights

© 2008 Missouri University of Science and Technology, All rights reserved.

Document Type

Article - Conference proceedings

File Type

text

Language

English

Share

 
COinS
 
Aug 11th, 12:00 AM Aug 16th, 12:00 AM

Case Histories of Settlement Performance Comparisons on Ground Improvement Using Soil Stiffness

Arlington, Virginia

Ground improvements often aim to reduce settlement risks for foundations and this requires reliable methods of prediction. Current approaches are based on empirical procedures and methods developed over 30 years ago. This has resulted historically in designs and installations of unnecessarily sophisticated foundations. In addition many developments now encountered by ground improvement contractors involve previously developed or ‘brownfield’ sites made up of heterogeneous and variable made ground. Methods to predict settlements traditionally use destructive and invasive approaches such as SPT or CPT that can be insensitive to time dependent changes, which often occur when brownfield sites are improved. By comparison geophysical methods are both non-invasive and non-destructive. One such technique that has demonstrated considerable promise is that of continuous surface wave determinations, which allows stiffness depth profiles to be obtained in a cost effective way. A recently developed method to determine settlements from these data has shown through four case studies presented in this paper to accurately predict settlements measured from zone tests. Thus offers a potentially more reliable way to predict settlement profiles than traditionally used methods.