Location

Arlington, Virginia

Date

13 Aug 2008, 5:15pm - 6:45pm

Abstract

The paper studies the effect of large slope movements on foundations through case histories. More than 30 well-documented case histories of damaged buildings near the tip of slopes due to excessive movement caused by either heavy rain or earthquakes were collected. The case histories showed that a critical factor affecting the level of damage of buildings, is the coefficient Ι, that is defined as the ratio of the width below the foundation that settles by the total width of the foundation: (a) When Ι < 0.2, collapse does not occur, even if settlement is very large, (b). When 0.2 < Ι < 1.0, the level of damage depends both on settlement and the factor l. (c) When Ι=1, buildings may not collapse, even if the settlement is very large, about 1m, but damage and rotation may be high. The above hold regardless of the cause of the slide: heavy rain or earthquake.

Department(s)

Civil, Architectural and Environmental Engineering

Meeting Name

6th Conference of the International Conference on Case Histories in Geotechnical Engineering

Publisher

Missouri University of Science and Technology

Document Version

Final Version

Rights

© 2008 Missouri University of Science and Technology, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Document Type

Article - Conference proceedings

File Type

text

Language

English

Share

 
COinS
 
Aug 11th, 12:00 AM Aug 16th, 12:00 AM

Case Histories of Damage of Foundations Near Sliding Slopes

Arlington, Virginia

The paper studies the effect of large slope movements on foundations through case histories. More than 30 well-documented case histories of damaged buildings near the tip of slopes due to excessive movement caused by either heavy rain or earthquakes were collected. The case histories showed that a critical factor affecting the level of damage of buildings, is the coefficient Ι, that is defined as the ratio of the width below the foundation that settles by the total width of the foundation: (a) When Ι < 0.2, collapse does not occur, even if settlement is very large, (b). When 0.2 < Ι < 1.0, the level of damage depends both on settlement and the factor l. (c) When Ι=1, buildings may not collapse, even if the settlement is very large, about 1m, but damage and rotation may be high. The above hold regardless of the cause of the slide: heavy rain or earthquake.