Location

Arlington, Virginia

Date

14 Aug 2008, 11:55 am - 12:15 pm

Abstract

Recent advances in strain measurement using optical fibers provide new opportunities for monitoring the performance of geotechnical structures during and after construction. Brillouin optical time-domain reflectometry (BOTDR) is an innovative technique that allows measurement of full strain profiles using standard optical fibers. In this paper, two case studies illustrating the application of the distributed optical fiber strain sensors are presented. One is monitoring of an old masonry tunnel when a new tunnel was constructed nearby and the other is monitoring the behavior of secant piled walls for basement construction. Both sites are located in London. The advantages and limitations of this new sensor technology for monitoring geotechnical structures are discussed.

Department(s)

Civil, Architectural and Environmental Engineering

Meeting Name

6th Conference of the International Conference on Case Histories in Geotechnical Engineering

Publisher

Missouri University of Science and Technology

Document Version

Final Version

Rights

© 2008 Missouri University of Science and Technology, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Document Type

Article - Conference proceedings

File Type

text

Language

English

Share

 
COinS
 
Aug 11th, 12:00 AM Aug 16th, 12:00 AM

Distributed Fiber Optics Strain Measurements for Monitoring Geotechnical Structures

Arlington, Virginia

Recent advances in strain measurement using optical fibers provide new opportunities for monitoring the performance of geotechnical structures during and after construction. Brillouin optical time-domain reflectometry (BOTDR) is an innovative technique that allows measurement of full strain profiles using standard optical fibers. In this paper, two case studies illustrating the application of the distributed optical fiber strain sensors are presented. One is monitoring of an old masonry tunnel when a new tunnel was constructed nearby and the other is monitoring the behavior of secant piled walls for basement construction. Both sites are located in London. The advantages and limitations of this new sensor technology for monitoring geotechnical structures are discussed.