Location

New York, New York

Session Start Date

4-13-2004

Session End Date

4-17-2004

Abstract

During recent earthquakes small dams and embankments suffered large settlements as a result of earthquake-induced liquefaction. One such case is the mole embankment that settled about 1.2m and was displaced horizontally by about 2m at King Harbor Redondo Beach, California as a result of the Northridge earthquake of 1994 (Kerwin and Stone, 1997). The conventional sliding-block model has shortcomings in back-estimating the critical acceleration and corresponding strength of such earthquake-induced slides when seismic displacement is large. The reason is that the change on geometry of the sliding mass, that greatly affects the seismic displacement, is not modeled. Stamatopoulos et al (2000) proposed a two-body sliding system that models this change in geometry. In the present paper, the Stamatopoulos et al (2000) sliding system model is used to back-estimate the residual shear strength of the mole embankment at King Harbor Redondo Beach. Then, the correlation of the residual soil strength and the blow count resistance of the SPT of this case is compared to the relationship that has been proposed by Seed and Harder (1990).

Department(s)

Civil, Architectural and Environmental Engineering

Appears In

International Conference on Case Histories in Geotechnical Engineering

Meeting Name

Fifth Conference

Publisher

University of Missouri--Rolla

Publication Date

4-13-2004

Document Version

Final Version

Rights

© 2004 University of Missouri--Rolla, All rights reserved.

Document Type

Article - Conference proceedings

File Type

text

Language

English

Share

 
COinS
 
Apr 13th, 12:00 AM Apr 17th, 12:00 AM

Back Analysis of the Liquefaction Failure at King Harbor Redondo Beach, California

New York, New York

During recent earthquakes small dams and embankments suffered large settlements as a result of earthquake-induced liquefaction. One such case is the mole embankment that settled about 1.2m and was displaced horizontally by about 2m at King Harbor Redondo Beach, California as a result of the Northridge earthquake of 1994 (Kerwin and Stone, 1997). The conventional sliding-block model has shortcomings in back-estimating the critical acceleration and corresponding strength of such earthquake-induced slides when seismic displacement is large. The reason is that the change on geometry of the sliding mass, that greatly affects the seismic displacement, is not modeled. Stamatopoulos et al (2000) proposed a two-body sliding system that models this change in geometry. In the present paper, the Stamatopoulos et al (2000) sliding system model is used to back-estimate the residual shear strength of the mole embankment at King Harbor Redondo Beach. Then, the correlation of the residual soil strength and the blow count resistance of the SPT of this case is compared to the relationship that has been proposed by Seed and Harder (1990).