Location

New York, New York

Session Start Date

4-13-2004

Session End Date

4-17-2004

Abstract

A methodology was developed to evaluate causation of a complex landslide that occurred in Franciscan Complex melange during the winter of 1996-1997 in San Mateo County, California. Conventional back-analysis methods to evaluate shear strength parameters were insufficient because the basal failure plane traversed three materials (fill, block-poor melange, and block-rich melange). Instead, using field observations of landslide kinematics, review of available subsurface data, and previous experience with Franciscan melange, a methodology was developed that incorporates the location of critical failure surfaces generated by random search routines in PCSTABL5M as an additional constraint. The methodology was employed to evaluate the relative effects of various destabilizing modifications to the slope.

Department(s)

Civil, Architectural and Environmental Engineering

Appears In

International Conference on Case Histories in Geotechnical Engineering

Meeting Name

Fifth Conference

Publisher

University of Missouri--Rolla

Publication Date

4-13-2004

Document Version

Final Version

Rights

© 2004 University of Missouri--Rolla, All rights reserved.

Document Type

Article - Conference proceedings

File Type

text

Language

English

Share

 
COinS
 
Apr 13th, 12:00 AM Apr 17th, 12:00 AM

Shear Strength of Franciscan Complex Melange as Calculated from Back-Analysis of a Landslide

New York, New York

A methodology was developed to evaluate causation of a complex landslide that occurred in Franciscan Complex melange during the winter of 1996-1997 in San Mateo County, California. Conventional back-analysis methods to evaluate shear strength parameters were insufficient because the basal failure plane traversed three materials (fill, block-poor melange, and block-rich melange). Instead, using field observations of landslide kinematics, review of available subsurface data, and previous experience with Franciscan melange, a methodology was developed that incorporates the location of critical failure surfaces generated by random search routines in PCSTABL5M as an additional constraint. The methodology was employed to evaluate the relative effects of various destabilizing modifications to the slope.