Date

03 Jun 1988, 10:00 am - 5:30 pm

Abstract

The design, construction, and performance of several building foundations and temporary earth retaining structures located in the downtown area of White Plains, New York are presented in this paper. High rise structures were supported on shallow mat or spread foundations bearing on erratic saturated alluvial silt and sand deposits. Additionally, the construction of two and three level underground parking structures required the use of cantilevered and braced excavation support systems to retain the adjacent streets and utilities. Several assumptions were required to design and predict the performance of the building foundations and retaining structures. The accuracy of these assumptions was verified through the use of precise field measurements during and after construction. The results of these field measurements and comparison with predicted values are presented and discussed.

Department(s)

Civil, Architectural and Environmental Engineering

Meeting Name

2nd Conference of the International Conference on Case Histories in Geotechnical Engineering

Publisher

University of Missouri--Rolla

Document Version

Final Version

Rights

© 1988 University of Missouri--Rolla, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Document Type

Article - Conference proceedings

File Type

text

Language

English

Share

 
COinS
 
Jun 1st, 12:00 AM

Performance of Foundations and Retaining Structures

The design, construction, and performance of several building foundations and temporary earth retaining structures located in the downtown area of White Plains, New York are presented in this paper. High rise structures were supported on shallow mat or spread foundations bearing on erratic saturated alluvial silt and sand deposits. Additionally, the construction of two and three level underground parking structures required the use of cantilevered and braced excavation support systems to retain the adjacent streets and utilities. Several assumptions were required to design and predict the performance of the building foundations and retaining structures. The accuracy of these assumptions was verified through the use of precise field measurements during and after construction. The results of these field measurements and comparison with predicted values are presented and discussed.