Session Start Date

5-6-1984

Abstract

This paper describes the design and compares predicted performance to actual responses of a drilled pier foundation supporting a 305m high chimney. The purpose was to evaluate laboratory and empirical side friction and end bearing criteria used in the pier design. Based on results of a subsurface exploration program, and consideration of vibration effects on nearby structures, a foundation system was designed consisting of 38 drilled piers capped with a concrete mat. The piers had an average diameter of 1.37m in soil and 1.22m in rock. The average length of pier was 15.63m including a rock socket 2.44m deep. Each pier was designed to support a maximum compressional load of 1,362 tons. The side friction and end bearing capacity was analyzed from data accumulated under construction and service conditions. A comparison of this analysis with criteria suggested by others indicated compliance with accepted design standards.

Department(s)

Civil, Architectural and Environmental Engineering

Appears In

International Conference on Case Histories in Geotechnical Engineering

Meeting Name

First Conference

Publisher

University of Missouri--Rolla

Publication Date

5-6-1984

Document Version

Final Version

Rights

© 1984 University of Missouri--Rolla, All rights reserved.

Document Type

Article - Conference proceedings

File Type

text

Language

English

Share

 
COinS
 
May 6th, 12:00 AM

Chimney Foundation on Drilled Piers

This paper describes the design and compares predicted performance to actual responses of a drilled pier foundation supporting a 305m high chimney. The purpose was to evaluate laboratory and empirical side friction and end bearing criteria used in the pier design. Based on results of a subsurface exploration program, and consideration of vibration effects on nearby structures, a foundation system was designed consisting of 38 drilled piers capped with a concrete mat. The piers had an average diameter of 1.37m in soil and 1.22m in rock. The average length of pier was 15.63m including a rock socket 2.44m deep. Each pier was designed to support a maximum compressional load of 1,362 tons. The side friction and end bearing capacity was analyzed from data accumulated under construction and service conditions. A comparison of this analysis with criteria suggested by others indicated compliance with accepted design standards.