Applying the Mahalanobis-Taguchi System to Vehicle Handling

Kioumars Paryani
Elizabeth A. Cudney, Missouri University of Science and Technology
K. M. Ragsdell, Missouri University of Science and Technology

This document has been relocated to

There were 23 downloads as of 27 Jun 2016.


The Mahalanobis-Taguchi system (MTS) is a diagnosis and forecasting method using multivariate data. Mahalanobis distance (MD) is a measure based on correlations between the variables and patterns that can be identified and analyzed with respect to a base or reference group. The MTS is of interest because of its reported accuracy in forecasting using small, correlated data sets. This is the type of data that is encountered with consumer vehicle ratings. MTS enables a reduction in dimensionality and the ability to develop a scale based on MD values. MTS identifies a set of useful variables from the complete data set with equivalent correlation and considerably less time and data. This article presents the application of the MTS, its applicability in identifying a reduced set of useful variables in multidimensional systems, and a comparison of results with those obtained from a standard statistical approach to the problem.