Absorbing-State Phase Transitions on Percolating Lattices

Man Young Lee
Thomas Vojta, Missouri University of Science and Technology

This document has been relocated to http://scholarsmine.mst.edu/phys_facwork/270

There were 1 downloads as of 27 Jun 2016.


We study nonequilibrium phase transitions of reaction-diffusion systems defined on randomly diluted lattices, focusing on the transition across the lattice percolation threshold. To develop a theory for this transition, we combine classical percolation theory with the properties of the supercritical nonequilibrium system on a finite-size cluster. In the case of the contact process, the interplay between geometric criticality due to percolation and dynamical fluctuations of the nonequilibrium system leads to a different universality class. The critical point is characterized by ultraslow activated dynamical scaling and accompanied by strong Griffiths singularities. To confirm the universality of this exotic scaling scenario we also study the generalized contact process with several (symmetric) absorbing states and we support our theory by extensive Monte Carlo simulations.