Robust/Optimal Temperature Profile Control of a High-Speed Aerospace Vehicle using Neural Networks

Vivek Yadav
Radhakant Padhi
S. N. Balakrishnan, Missouri University of Science and Technology

This document has been relocated to

There were 10 downloads as of 28 Jun 2016.


An approximate dynamic programming (ADP)-based suboptimal neurocontroller to obtain desired temperature for a high-speed aerospace vehicle is synthesized in this paper. a 1-D distributed parameter model of a fin is developed from basic thermal physics principles. ldquoSnapshotrdquo solutions of the dynamics are generated with a simple dynamic inversion-based feedback controller. Empirical basis functions are designed using the ldquoproper orthogonal decompositionrdquo (POD) technique and the snapshot solutions. a low-order nonlinear lumped parameter system to characterize the infinite dimensional system is obtained by carrying out a Galerkin projection. an ADP-based neurocontroller with a dual heuristic programming (DHP) formulation is obtained with a single-network-adaptive-critic (SNAC) controller for this approximate nonlinear model. Actual control in the original domain is calculated with the same POD basis functions through a reverse mapping. Further contribution of this paper includes development of an online robust neurocontroller to account for unmodeled dynamics and parametric uncertainties inherent in such a complex dynamic system. a neural network (NN) weight update rule that guarantees boundedness of the weights and relaxes the need for persistence of excitation (PE) condition is presented. Simulation studies show that in a fairly extensive but compact domain, any desired temperature profile can be achieved starting from any initial temperature profile. Therefore, the ADP and NN-based controllers appear to have the potential to become controller synthesis tools for nonlinear distributed parameter systems.