Segmental Dynamics in Poly(Methyl Acrylate) on Silica: Molecular-mass Effects

Burak Metin
Frank D. Blum, Missouri University of Science and Technology

This document has been relocated to http://scholarsmine.mst.edu/chem_facwork/2421

There were 14 downloads as of 28 Jun 2016.

Abstract

The effect of molecular mass on the segmental dynamics of poly(methyl acrylate) (PMA) adsorbed on silica was studied using deuterium quadrupole-echo nuclear magnetic resonance (NMR) and modulated differential scanning calorimetry. Samples adsorbed on silica (all about 1.5 mg PMA/m2 silica) were shown to have more restricted segmental mobility, and higher Tg's, than the corresponding bulk PMA samples. Around the glass-transition region, adsorbed samples exhibited segmental mobility, which could be classified as heterogeneous due to a superposition of more-mobile and less-mobile components present in the deuterium NMR spectra. This heterogeneity was consistent with a motional gradient with more-mobile segments near the polymer-air interface and the less-mobile species near the polymer-silica interface. The mobility of the adsorbed 77 kDa PMA sample was the lowest among the four different molecular-mass samples studied. Samples studied with masses both larger and smaller than 77 kDa had larger mobile-component fractions in the adsorbed polymer. The additional mobility was attributed to the presence of either longer tail and loop conformations in the higher molecular-mass samples or the inherent mobility of the tails in the lower molecular-mass samples on the surface.