Enhanced Particle Swarm Optimizer for Power System Applications

Yamille del Valle
M. Digman
A. Gray
J. Perkel
Ganesh K. Venayagamoorthy, Missouri University of Science and Technology
Ronald G. Harley

This document has been relocated to http://scholarsmine.mst.edu/ele_comeng_facwork/1594

There were 6 downloads as of 28 Jun 2016.


Power system networks are complex systems that are highly nonlinear and non-stationary, and therefore, their performance is difficult to optimize using traditional optimization techniques. This paper presents an enhanced particle swarm optimizer for solving constrained optimization problems for power system applications, in particular, the optimal allocation of multiple STATCOM units. The study focuses on the capability of the algorithm to find feasible solutions in a highly restricted hyperspace. The performance of the enhanced particle swarm optimizer is compared with the classical particle swarm optimization (PSO) algorithm, genetic algorithm (GA) and bacterial foraging algorithm (BFA). Results show that the enhanced PSO is able to find feasible solutions faster and converge to feasible regions more often as compared with other algorithms. Additionally, the enhanced PSO is capable of finding the global optimum without getting trapped in local minima.