Mobile Speed Estimation for Broadband Wireless Communications

Y. Rosa Zheng, Missouri University of Science and Technology
Chengshan Xiao, Missouri University of Science and Technology

This document has been relocated to http://scholarsmine.mst.edu/ele_comeng_facwork/1732

There were 3 downloads as of 28 Jun 2016.

Abstract

In this paper, a new algorithm is proposed to estimate mobile speed for broadband wireless communications, which often encounter large number of fading channel taps causing severe intersymbol interference. Theoretical analysis is first derived and practical algorithm is proposed based on the analytical results. The algorithm employs a modified auto-covariance of received signal power to estimate the speed of mobiles. The algorithm is based on the received signals which contain unknown transmitted data, unknown frequency selective multipaths possibly including line-of-sight (LOS) component, and random receiver noise. The algorithm works well for frequency selective Rayleigh and Rician channels. The algorithm is very resistant to noise, it provides accurate speed estimation even if the signal-to-noise (SNR) is as low as 0dB. Simulation results indicate that the new algorithm is very reliable and effective to estimation mobile speed corresponding maximum Doppler up to 500Hz. The algorithm has high computational efficiency and low estimation latency, with results being available within one second after communication is established.