Optimal Wide Area Controller and State Predictor for a Power System

Salman Mohagheghi
Ganesh K. Venayagamoorthy, Missouri University of Science and Technology
Ronald G. Harley

This document has been relocated to http://scholarsmine.mst.edu/ele_comeng_facwork/1196

There were 20 downloads as of 27 Jun 2016.

Abstract

An optimal wide area controller is designed in this paper for a 12-bus power system together with a Static Compensator (STATCOM). The controller provides auxiliary reference signals for the automatic voltage regulators (AVR) of the generators as well as the line voltage controller of the STATCOM in such a way that it improves the damping of the rotor speed deviations of the synchronous machines. Adaptive critic designs theory is used to implement the controller and enable it to provide nonlinear optimal control over the infinite horizon time of the problem and at different operating conditions of the power system. Simulation results are provided to indicate that the proposed wide area controller improves the damping of the rotor speed deviations of the generators during large scale disturbances. Moreover, a robust radial basis function network based identifier is presented in this paper to predict the states of a multimachine power system in real-time. This wide area state predictor (WASP) compensates for transport lags associated with the present communication technology for wide area monitoring of the electric power grid. The WASP is also robust to partial loss of information caused by larger than expected transport lags or even failed sensors throughout the network.