Abstract

This paper highlights and validates the use of shape analysis using Mathematical Morphology tools as a means to develop meaningful clustering of historical data. Furthermore, through clustering more appropriate grouping can be accomplished that can result in the better parameterization or estimation of models. This results in more effective prediction model development. Hence, in an effort to highlight this within the research herein, a Back-Propagation Neural Network is used to validate the classification achieved through the employment of MM tools. Specifically, the Granulometric Size Distribution (GSD) is used to achieve clustering of daily traffic flow patterns based solely on their shape. To ascertain the significance of shape in traffic analysis, a comparative classification analysis of original data and GSD transformed data is carried out. The results demonstrate the significance of functional shape in traffic analysis. In addition, the results validate the need for clustering prior to prediction. It is determined that a span of two through four years of traffic data is found sufficient for training to produce satisfactory BPNN performance.

Meeting Name

Complex Adaptive Systems (2016: Nov. 2-4, Los Angeles, CA)

Department(s)

Engineering Management and Systems Engineering

Second Department

Electrical and Computer Engineering

Research Center/Lab(s)

Center for High Performance Computing Research

Keywords and Phrases

Adaptive Systems; Backpropagation; Complex Networks; Neural Networks; Size Distribution; Back Propagation Neural Networks; Classification Analysis; Clustering; Functional Datas; Granulometric Size Distribution (GSD); Hybrid Computational; Traffic Flow; Traffic Flow Patterns; Mathematical Morphology

International Standard Serial Number (ISSN)

18770509

Document Type

Article - Conference proceedings

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2016 Elsevier B.V., All rights reserved.