Abstract

The self-organizing map (SOM) is naturally unsupervised learning, but if a class label is known, it can be used as the classifier. In a SOM classifier, each neuron is assigned a class label based on the maximum class frequency and classified by a nearest neighbor strategy. The drawback when using this strategy is that each pattern is treated by equal importance in counting class frequency regardless of its typicalness. For this reason, the fuzzy class membership can be used instead of crisp class frequency and this fuzzy membership-label neuron provides another perspective of a feature map. This fuzzy class membership can be also used to select training samples in a support vector machine (SVM) classifier. This method allows us to reduce the training set as well as support vectors without significant loss of classification performance.

Meeting Name

International Joint Conference on Neural Networks, 2001

Department(s)

Engineering Management and Systems Engineering

Keywords and Phrases

Class Label; Classification Performance; Classifier; Feature Map; Fuzzy Class Memberships; Fuzzy Set Theory; Learning Automata; Maximum Class Frequency; Nearest Neighbor Strategy; Pattern Classification; Self-Organising Feature Maps; Self-Organizing Map; Support Vector Machines; Training Samples; Unsupervised Learning

Document Type

Article - Conference proceedings

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2001 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.

Full Text Link

Share

 
COinS