Abstract

In this paper, we employ a time-domain channel estimation, equalization and phase correction scheme for single carrier single input multiple output (SIMO) underwater acoustic communications. In this scheme, Doppler shift, which is caused by relative motion between transducer (source) and hydrophones (receiver), is estimated and compensated in the received baseband signals. Then the channel is estimated using a small training block at the front of a transmitted data package, in which the data is artificially partitioned into consecutive data blocks. The estimated channel is utilized to equalize a block of received data, then the equalized data is processed by a group-wise phase correction before data detection. At the end of the detected data block, a small portion of the detected data is utilized to update channel estimation, and the re-estimated channel is employed for channel equalization for next data block. This block-wise channel estimation, equalization and phase correction process is repeated until the entire data package is processed. The receiver scheme is tested with experimental data measured at Saint Margaret's Bay, Nova Scotia, Canada, in May 2006. The results show that it can be applied not only to the scenario of fixed source to fixed receiver, but also to the moving source to fixed receiver case. The achievable uncoded bit error rate (BER) is on the order of 10-4 for moving-to-fixed transmissions, and on the order of 10-5 for fixed-to-fixed transmissions.

Meeting Name

MTS/IEEE Kobe Techno-Ocean OCEANS 2008

Department(s)

Electrical and Computer Engineering

Sponsor(s)

National Science Foundation (U.S.)
United States. Office of Naval Research

Keywords and Phrases

Doppler Shift; Channel Estimation; Oceanographic Techniques; Underwater Acoustic Communication

Document Type

Article - Conference proceedings

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2008 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.

Full Text Link

Share

 
COinS