Abstract

Portable, accurate, and relatively inexpensive high-frequency vector network analyzers (VNAs) have great utility for a wide range of applications, encompassing microwave circuit characterization, reflectometry, imaging, material characterization, and nondestructive testing to name a few. To meet the rising demand for VNAs possessing the aforementioned attributes, we present a novel and simple VNA design based on a standing-wave probing device and an electronically controllable phase shifter. The phase shifter is inserted between a device under test (DUT) and a standing-wave probing device. The complex reflection coefficient of the DUT is then obtained from multiple standing-wave voltage measurements taken for several different values of the phase shift. The proposed VNA design eliminates the need for expensive heterodyne detection schemes required for tuned receiver-based VNA designs. Compared with previously developed VNAs that operate based on performing multiple power measurements, the proposed VNA utilizes a single power detector without the need for multiport hybrid couplers. In this paper, the efficacy of the proposed VNA is demonstrated via numerical simulations and experimental measurements. For this purpose, measurements of various DUTs obtained using an X-band (8.212.4 GHz) prototype VNA are presented and compared with results obtained using an Agilent HP8510C VNA. The results show that the proposed VNA provides highly accurate vector measurements with typical errors on the order of 0.02 and 1° for magnitude and phase, respectively.

Department(s)

Electrical and Computer Engineering

Sponsor(s)

United States. Air Force

Keywords and Phrases

Power Detectors; Reflection Coefficient; Reflection Coefficients; Standing-Wave Probe; Vector Network Analyzers; Computer Simulation; Detectors; Electric Connectors; Electric Network Analysis; Microwave Circuits; Microwave Devices; Nondestructive Examination; Phase Shift; Phase Shifters; Probes; Reflection; Vectors; Electric Network Analyzers; Phase Shifter; Power Detector; Vector Network Analyzer (VNA); Phase shifters

International Standard Serial Number (ISSN)

0018-9456

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2010 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.

Publication Date

01 Mar 2010

Share

 
COinS