Abstract

Current sensing is widely used in power electronic applications such as dc-dc power converters and adjustable-speed motor drives. Such power converters are the basic building blocks of drivetrains in electric, hybrid, and plug-in hybrid electric vehicles. The performance and control of such vehicles depend on the accuracy, bandwidth, and efficiency of its sensors. Various current-sensing techniques based on different physical effects such as Faraday's induction law, Ohm's law, Lorentz force law, the magnetoresistance effect, and the magnetic saturation effect are described in this paper. Each technique is reviewed and examined. The current measurement methods are compared and analyzed based on their losslessness, simplicity, and ease of implementation.

Department(s)

Electrical and Computer Engineering

Sponsor(s)

National Science Foundation (U.S.)

Keywords and Phrases

Automotive Electronics; Current Sensing

Library of Congress Subject Headings

Power electronics

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2009 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.

Full Text Link

Share

 
COinS