Abstract

A desirable content-based image retrieval (CBIR) system would classify extracted image features to support some form of semantic retrieval. The Lister Hill National Center for Biomedical Communications, an intramural R&D division of the National Library for Medicine (NLM), maintains an archive of digitized X-rays of the cervical and lumbar spine taken as part of the second national health and nutrition examination survey (NHANES II). It is our goal to provide shape-based access to digitized X-rays including retrieval on automatically detected and classified pathology, e.g., anterior osteophytes. This is done using radius of curvature analysis along the anterior portion, and morphological analysis for quantifying protrusion regions along the vertebra boundary. Experimental results are presented for the classification of 704 cervical spine vertebrae by evaluating the features using a multi-layer perceptron (MLP) based approach. In this paper, we describe the design and current status of the content-based image retrieval (CBIR) system and the role of neural networks in the design of an effective multimedia information retrieval system.

Meeting Name

International Joint Conference on Neural Networks, 2003

Department(s)

Electrical and Computer Engineering

Keywords and Phrases

704 Cervical Spine Vertebrae; Lister Hill National Center for Biomedical Communications; MLP; National Library for Medicine; Anterior Osteophytes; Anterior Portion; Automatically Classified Pathology; Automatically Detected Pathology; Bone; Cervical Digitized X-Ray; Content-Based Image Retrieval; Content-Based Retrieval; Curvature Analysis; Diagnostic Radiography; Image Classification; Image Features Extraction; Image Retrieval; Information Retrieval Systems; Lumbar Spine Digitized X-Ray; Medical Image Processing; Morphological Analysis; Multilayer Perceptron; Multilayer Perceptrons; Multimedia Information Retrieval System; Neural Networks; Protrusion Regions Quantification; Second National Health and Nutrition Examination Survey; Semantic Retrieval; Vertebra Boundary; Vertebra Shape Classification

International Standard Serial Number (ISSN)

1098-7576

Document Type

Article - Conference proceedings

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2003 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.

Full Text Link

Share

 
COinS