Abstract

The authors quantify the accuracy of bit error rate (BER) estimates produced by Monte Carlo simulations by carefully applying confidence interval estimation techniques. Due to numerical difficulties, some previous work in this area has assumed that the BER statistic possessed a Gaussian distribution. The authors demonstrate that in some important regions the estimate is decidedly non-Gaussian, and application of central limit theorem arguments can result in errors in excess of an order of magnitude. They investigate the accuracy of common approximations and the feasibility of exact calculation of confidence intervals, and present a novel polynomial class approximation. By combining this approximation with more conventional approaches, an algorithm is developed for estimating confidence intervals of BER estimates. The algorithm is nonrecursive and numerically stable, requires a trivial amount of compute time to evaluate, has a small margin of error, and can be used for all error rates less than 0.5

Meeting Name

IEEE Military Communications Conference, 1992. MILCOM '92

Department(s)

Electrical and Computer Engineering

Keywords and Phrases

BER Estimates; Monte Carlo Methods; Monte Carlo Simulation; Accuracy; Bit Error Rate; Central Limit Theorem; Confidence Interval Estimation; Digital Communication Systems; Digital Simulation; Error Statistics; NonGaussian Distribution; Nonrecursive Algorithm; Polynomial Class Approximation; Telecommunications Computing

Document Type

Article - Conference proceedings

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 1992 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.

Full Text Link

Share

 
COinS