Title

Effects of N-acetylcysteine Amide (NACA), a Novel Thiol Antioxidant Against Glutamate-induced Cytotoxicity in Neuronal Cell Line PC12

Abstract

Oxidative stress plays an important role in neuronal cell death associated with many different neurodegenerative conditions such as cerebral ischemia and Parkinson's disease. Elevated levels of glutamate are thought to be responsible for CNS disorders through various mechanisms causing oxidative stress induced by a nonreceptor-mediated oxidative pathway which blocks cystine uptake and results in depletion of intracellular glutathione (GSH). the newly designed amide form of N-acetylcysteine (NAC), N-acetylcysteine amide (NACA), was assessed for its ability to protect PC12 cells against oxidative toxicity induced by glutamate. NACA was shown to protect PC12 cells from glutamate (Glu) toxicity, as evaluated by LDH and MTS assays. NACA prevented glutamate-induced intracellular GSH loss. in addition, NACA restored GSH synthesis in a Glu (10 mM) plus buthionine-sulfoximine (BSO) (0.2 mM)-treated group, indicating that the intracellular GSH increase is independent of γ-GSC (γ-glutamylcysteinyl synthetase). the increase in levels of reactive oxygen species (ROS) induced by glutamate was significantly decreased by NACA. Measurement of malondialdehyde (MDA) showed that NACA reduced glutamate-induced elevations in levels of lipid peroxidation by-products. These results demonstrate that NACA can protect PC12 cells against glutamate cytotoxicity by inhibiting lipid peroxidation, and scavenging ROS, thus preserving intracellular

Department(s)

Chemistry

Sponsor(s)

National Institute of Environmental Health

Library of Congress Subject Headings

Glutamic acid
Oxidative stress

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2005 Elsevier, All rights reserved.


Share

 
COinS