Title

Critical Role of Cytochrome P450 2E1 (CYP2E1) in the Development of High Fat-induced Non-alcoholic Steatohepatitis

Abstract

Background & Aims: Ethanol-inducible cytochrome P450 2E1 (CYP2E1) activity contributes to oxidative stress. However, CYP2E1 may have an important role in the pathogenesis of high-fat mediated non-alcoholic steatohepatitis (NASH). Thus, the role of CYP2E1 in high-fat mediated NASH development was evaluated. Methods: Male wild type (WT) and Cyp2e1-null mice were fed a low-fat diet (LFD, 10% energy-derived) or a high-fat diet (HFD, 60% energy-derived) for 10 weeks. Liver histology and tissue homogenates were examined for various parameters of oxidative stress and inflammation. Results: Liver histology showed that only WT mice fed a HFD developed NASH despite the presence of increased steatosis in both WT and Cyp2e1-null mice fed HFD. Markers of oxidative stress such as elevated CYP2E1 activity and protein amounts, lipid peroxidation, protein carbonylation, nitration, and glycation with increased phospho-JNK were all markedly elevated only in the livers of HFD-fed WT mice. Furthermore, while the levels of inflammation markers osteopontin and F4/80 were higher in HFD-fed WT mice, TNFα and MCP-1 levels were lower compared to the corresponding LFD-fed WT. Finally, only HFD-fed WT mice exhibited increased insulin resistance and impaired glucose tolerance. Conclusions: These data suggest that CYP2E1 is critically important in NASH development by promoting oxidative/nitrosative stress, protein modifications, inflammation, and insulin resistance. © 2012 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

Department(s)

Chemistry

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2012 Elsevier, All rights reserved.


Share

 
COinS