Title

Communication: Highly Accurate Ozone Formation Potential and Implications for Kinetics

Abstract

Atmospheric ozone is formed by the O + O2 exchange reaction followed by collisional stabilization of the O3* intermediate. The dynamics of the O + O2 reaction and to a lesser extent the O3 stabilization depend sensitively on the underlying potential energy surface, particularly in the asymptotic region. Highly accurate Davidson corrected multi-state multi-reference configuration interaction calculations reported here reveal that the minimal energy path for the formation of O3 from O + O2 is a monotonically decaying function of the atom-diatom distance and contains no “reef” feature found in previous ab initio calculations. The absence of a submerged barrier leads to an exchange rate constant with the correct temperature dependence and is in better agreement with experiment, as shown by quantum scattering calculations.

Department(s)

Chemistry

International Standard Serial Number (ISSN)

219606

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2011 American Institute of Physics (AIP), All rights reserved.


Share

 
COinS