Abstract

Efforts to understand unusual weather or abrupt changes in climate have been plagued by deficiencies of the standard solar model (SSM) [1]. Although it assumes that our primary source of energy began as a homogeneous ball of hydrogen (H) with a steady, well-behaved H-fusion reactor at its core, observations instead reveal a very heterogeneous, dynamic Sun. As examples, the upward acceleration and departure of H+ ions from the surface of the quiet Sun and abrupt climatic changes, including geomagnetic reversals and periodic magnetic storms that eject material from the solar surface are not explained by the SSM. The present magnetic fields are probably deep-seated remnants of very ancient origin. These could have been generated from two mechanisms. These are (1) Bose-Einstein condensation [2] of iron-rich, zero-spin material into a rotating, superfluid, superconductor surrounding the solar core and/or (2) superfluidity and quantized vortices in nucleon-paired Fermions at the core [3].

Department(s)

Chemistry

Keywords and Phrases

Climate; Solar Magnetic Fields; Solar Cycle; Bose-Einstein Condensates

International Standard Serial Number (ISSN)

0164-0313

Document Type

Article - Journal

Document Version

Accepted Manuscript

File Type

text

Language(s)

English

Rights

© 2002 Springer Verlag, All rights reserved.


Included in

Chemistry Commons

Share

 
COinS