Design and Application of Robust Rf Pulses for Toroid Cavity NMR Spectroscopy

Abstract

We present robust radio frequency (rf) pulses that tolerate a factor of six inhomogeneity in the B1 field, significantly enhancing the potential of toroid cavity resonators for NMR spectroscopic applications. Both point-to-point (PP) and unitary rotation (UR) pulses were optimized for excitation, inversion, and refocusing using the gradient ascent pulse engineering (GRAPE) algorithm based on optimal control theory. In addition, the optimized parameterization (OP) algorithm applied to the adiabatic BIR-4 UR pulse scheme enabled ultra-short (50 µs) pulses with acceptable performance compared to standard implementations. OP also discovered a new class of non-adiabatic pulse shapes with improved performance within the BIR-4 framework. However, none of the OP-BIR4 pulses are competitive with the more generally optimized UR pulses. The advantages of the new pulses are demonstrated in simulations and experiments. In particular, the DQF COSY result presented here represents the first implementation of 2D NMR spectroscopy using a toroid probe.

Department(s)

Chemistry

International Standard Serial Number (ISSN)

1090-7807

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2011 Elsevier, All rights reserved.

Publication Date

01 Apr 2011

Share

 
COinS