Title

Detection of Pigment Network in Dermatoscopy Images Using Texture Analysis

Abstract

Dermatoscopy, also known as dermoscopy or epiluminescence microscopy (ELM), is a non-invasive, in vivo technique, which permits visualization of features of pigmented melanocytic neoplasms that are not discernable by examination with the naked eye. ELM offers a completely new range of visual features. One such prominent feature is the pigment network. Two texture-based algorithms are developed for the detection of pigment network. These methods are applicable to various texture patterns in dermatoscopy images, including patterns that lack fine lines such as cobblestone, follicular, or thickened network patterns. Two texture algorithms, Laws energy masks and the neighborhood gray-level dependence matrix (NGLDM) large number emphasis, were optimized on a set of 155 dermatoscopy images and compared. Results suggest superiority of Laws energy masks for pigment network detection in dermatoscopy images. For both methods, a texel width of 10 pixels or approximately 0.22 mm is found for dermatoscopy images.

Department(s)

Chemistry

Second Department

Electrical and Computer Engineering

Sponsor(s)

National Institute of Health (U.S.)

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2004 Elsevier, All rights reserved.


Share

 
COinS