
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Fall 2018

Improved CRPD analysis and a secure scheduler against Improved CRPD analysis and a secure scheduler against

information leakage in real-time systems information leakage in real-time systems

Ying Zhang

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Sciences Commons

Department: Department:

Recommended Citation Recommended Citation
Zhang, Ying, "Improved CRPD analysis and a secure scheduler against information leakage in real-time
systems" (2018). Masters Theses. 7845.
https://scholarsmine.mst.edu/masters_theses/7845

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7845&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7845&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/7845?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7845&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

IMPROVED CRPD ANALYSIS AND A SECURE SCHEDULER AGAINST

INFORMATION LEAKAGE IN REAL-TIME SYSTEMS

by

YING ZHANG

A THESIS

Presented to the Graduate Faculty of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

in

COMPUTER SCIENCE

2018

Approved by:

George Markowsky, Advisor
Venkata Sriram Siddhardh Nadendla

Linda Markowsky

Copyright 2018

YING ZHANG

All Rights Reserved

iii

ABSTRACT

Real-time systems are widely applied to the time-critical fields. In order to guarantee

that all tasks can be completed on time, predictability becomes a necessary factor when

designing a real-time system. Due to more and more requirements about the performance in

the real-time embedded system, the cache memory is introduced to the real-time embedded

systems.

However, the cache behavior is difficult to predict since the data will be loaded either

on the cache or the memory. In order to taking the unexpected overhead, execution time are

often enlarged by a certain (huge) factor. However, this will cause a waste of computation

resource. Hence, in this thesis, we first integrate the cache-related preemption delay to the

previous global earliest deadline first schedulability analysis in the direct-mapped cache.

Moreover, several analyses for tighter G-EDF schedulability tests are conducted based on

the refined estimation of the maximal number of preemptions. The experimental study is

conducted to demonstrate the performance of the proposed methods.

Furthermore, Under the classic scheduling mechanisms, the execution patterns of

tasks on such a system can be easily derived. Therefore, in the second part of the thesis,

a novel scheduler, roulette wheel scheduler (RWS), is proposed to randomize the task

execution pattern. Unlike traditional schedulers, RWS assigns probabilities to each task

at predefined scheduling points, and the choice for execution is randomized, such that the

execution pattern is no longer fixed. We apply the concept of schedule entropy to measure

the amount of uncertainty introduced by any randomized scheduler, which reflects the

unlikelihood of for such attacks to success. Comparing to existing randomized scheduler

that gives all eligible tasks equal likelihood at a given time point, the proposed method

adjusted such values so that the entropy can be greatly increased.

iv

ACKNOWLEDGMENTS

I would like to express my gratitude to all those who have helped me with my studies

at Missouri S&T. Foremost, I would like to thanks Dr. George Markowsky, my advisor,

for giving me selfless support and kindly help. His motivation, enthusiasm, and immense

knowledge encourage me to overcome many difficulties in my graduate study. Secondly, I

would like to express my appreciation to Dr. Zhishan Guo and Dr. Wei Jiang. I am grateful

to them for giving me an opportunity to work with such outstanding researchers during

my graduate study. Their patient and valuable suggestions guided my research path, which

helps me to complete this work.

Further, I would like to thank my committee members, Dr. Venkata Sriram Sid-

dhardh Nadendla and Dr. Linda Markowsky, for serving on my thesis committee and for

taking the time to review this work. The feedback and discussion were of great value to me.

I appreciate the tremendous help from all the faculty members and staff of the Department

of Computer Science at Missouri S&T.

Last but not the least, I would like to thankmy parentsYubin Zhang andGuiling Zhao

and my boy friend Lingxiang Wang for their constant and unconditional love throughout

my life.

v

TABLE OF CONTENTS

Page

ABSTRACT . iii

ACKNOWLEDGMENTS . iv

LIST OF ILLUSTRATIONS . vii

LIST OF TABLES . ix

NOMENCLATURE . x

SECTION

1. INTRODUCTION. 1

1.1. CACHE-RELATED PREEMPTION DELAY IN GEDF . 2

1.2. INFORMATION LEAKAGE IN REAL-TIME SYSTEMS 3

1.3. CONTRIBUTION AND ORGANIZATION . 4

2. LITERATURE REVIEW . 7

2.1. GEDF SCHEDULABILITY ANALYSIS. 7

2.2. INTEGRATE CRPD INTO EDF ANALYSIS ON UNI-PROCESSOR 8

2.3. CACHE SIDE-CHANNEL ATTACKS AND DEFENSE IN REAL-TIME
SYSTEM.. 8

3. MULTI-CORE SYSTEM MODEL AND NOTATIONS . 10

4. GEDF-CRPD:AMULTIPROCESSORGEDFSCHEDULABILITYTESTFOR
CRPD ANALYSIS . 14

4.1. GLOBAL EDF SCHEDULABILITY TEST . 14

vi

4.2. INTEGRATE CRPD INTO GEDF SCHEDULING . 16

4.3. AN IMPROVED CRPD UPPER BOUND ANALYSIS . 20

4.3.1. Condensing the Multiset . 20

4.3.2. Reducing the Maximum Number of Preemptions . 21

4.4. EXPERIMENTAL AND EVALUATION . 22

5. RWS - A ROULETTE WHEEL SCHEDULER FOR PREVENTING EXECU-
TION PATTERN LEAKAGE. 26

5.1. SYSTEM MODEL AND ADVERSARY MODEL. 26

5.1.1. System Model and Terminology . 26

5.1.2. Attack Model and Motivation . 27

5.1.3. Problem Definition . 30

5.2. ROULETTE WHEEL SCHEDULER. 32

5.2.1. Offline RWS . 32

5.2.2. Online RWS. 35

5.2.3. The correctness of the online RWS . 41

5.2.4. Empty task . 46

5.3. EVALUATION . 47

5.3.1. Evaluation Setup. 47

5.3.2. Results . 47

6. CONCLUSION . 52

REFERENCES . 54

VITA . 59

vii

LIST OF ILLUSTRATIONS

Figure Page

3.1. Cache model of the system: all cores share a same on-chip cache. Note that
tasks executing on different cores do not have resource interference with each
other although they share a common cache. 10

3.2. GEDF scheduling of a sample task set. 11

3.3. A job of task τk with arrival time at ta and misses its deadline at td . t0 is the
time instant that at least one of the m processor is idle. 13

4.1. GEDF schedule of the taskset shown in Fig 2(a), where CRPD is taken into
consideration and the first job of τ2 misses its deadline at time t = 6. 16

4.2. Evaluation for five CRPD analysis approaches: the number of tasksets could
be schedulable at different total utilization in two processors. 24

4.3. Evaluation for five CRPD analysis approaches: the number of tasksets could
be schedulable at different total utilization in four processors.. 25

4.4. Evaluation for five CRPD analysis approaches: the number of tasksets could
be schedulable at different total utilization in eight processors. 25

5.1. A potential attack by utilizing the deterministic schedules in real-time systems.
The task filled with diagonal lines is an encryption task. After the attacks,
attackers are capacble to retrieve the un-encrypted data. 28

5.2. The line Proc is the execution sequence of the task set under theEDF scheduling
algorithm, while the line Proc_R represents one possible scheduling scenario
under randomized scheduling. 29

5.3. The timeline PROC is divided into small slices; each slice is one-time unit.
The scheduler will assign sufficient time slices to each job at the beginning of
a hyper-period. 34

5.4. Assume a task set τ = {τ1, τ2, τ3} with parameters τ1 = (1, 3), τ2 = (3, 6)
and τ3 = (1, 9), the demand bound function is shown as a solid line in one
hyper-period, while the adjusted demand bound function is calculated from
the end of the hyper-period shown as the dash line. 36

5.5. The scenario for resizing the waiting queue when some tasks are going to miss
their deadlines. The rectangle denotes the waiting queue. Since τ1,2 or τ2,1
will miss its deadline if τ3,1 executes, we do not allow τ3,1 to execute in this
scheduling point. 40

viii

5.6. One possible execution sequence of the task set τ1 = (5, 3), τ2 = (6, 2) under
∆ = 2 online RWS.. 42

5.7. Demonstration of time instants in the proof for Lemma III.1. 42

5.8. Timeline set up for proof of Theorem III.2. 44

5.9. Task sets with task number n=5 are scheduled under RWS, the average value
of schedule entropies are large than 10000. 49

5.10. Task sets with task number n=9 are scheduled under RWS, the average value
of schedule entropies are large than 40000. 49

5.11. Task sets with task number n=15 are scheduled under RWS, the average value
of schedule entropies are larger than 70000. 50

5.12. The schedule entropy for randomly generated task sets scheduled underTaskShuf-
flerYoon et al. (2016). Each group represents the schedule entropy for the
different number of tasks with same utilization. 50

5.13. Ratio results of RWS and TaskShufflerYoon et al. (2016) for the randomly
generated task set with different utilization. RWS outperforms TaskShuffler
by about 500 times on average under all settings. 51

ix

LIST OF TABLES

Table Page

5.1. Parameters of a task set. 29

5.2. Preliminary Variables . 32

5.3. Parameters of a task set. 34

5.4. Probability distribution of a task set. 40

5.5. PROC_R Slot entropy of a task set. 47

x

NOMENCLATURE

COTS Commercial Off the Shelf

CRPD Cache-related preemption Delay

DBF Demand Bound Function

GEDF Global Earliest Deadline First

RWS Roulette Wheel Selection

WCET Worst-Case Execution Time

1. INTRODUCTION

Real-time systems are widely used to support various critical computations and

control systems, such as navigation of automobiles and avionics (Mohan et al., 2014;

Sampigethaya et al., 2008; Shaout and McGirr, 2013). These systems are usually designed

in a multi-task programming pattern with a sequence of sub-tasks for execution. The

completion of sub-tasks is constrained by predefined deadlines in order to meet certain

constraints in real life (Puaut et al., 2003). For instance, for the autopilot functionality in an

automobile, the system should be able to finish every sub-task on time, such as collecting

images from sensors and making decisions based on these images. A logical and temporal

failure of this sub-task would bring a sequence of serious problems.

In order to guarantee temporal correctness, predictability is a significant property

when designing real-time systems (Stankovic and Ramamritham, 1990), (i.e., in order to

guarantee every task’s response within the assigned deadline, it is important to have a

priori estimation of the task’s execution time). In recent decades, with the rapid advance-

ment of real-time embedded systems, commercial off-the-shelf components (COTS) are

widely used. Regarding the performance requirements (Liptay, 1968; Prete et al.), the

cache memory is introduced to real-time systems. However, the cache behavior is diffi-

cult to predict (Ferdinand and Wilhelm, 1999). Obtaining a reasonable estimation of task

execution time becomes a challenge when tasks are running with the cache. Meanwhile,

recent research illustrates that cache side-channel attacks are powerful tools for attackers to

compromise the confidentiality of the target system, especially for real-time systems. Most

tasks are running periodically including the encryption tasks. This gives a higher chance

for attackers to steal information in the system.

2

In this thesis, the impact of cache in real-time systems will be studied twofold. First,

in order to avoid pessimistic estimation of the worst case execution time (WCET) due to the

cache interference, provide a more precise method for analyzing global earliest deadline first

(GEDF) schedulability test, we integrate the cache-related preemption delay (CRPD) into

GEDF formultiprocessor scheduling analysis; Second, we propose a randomized scheduling

algorithm that can mitigates information leakage in real-time systems. The following

sections will present the importance of integrating CRPD into GEDF and information

leakage in real-time systems.

1.1. CACHE-RELATED PREEMPTION DELAY IN GEDF

With the rapid growth of Cyber-Physical Systems (CPS) and Internet of Things (IoT)

(Lee, 2008), multiprocessors (Brucker, 1998) have been widely used in embedded real-time

systems in the last decade. The increasing computing power of multiprocessors provides

the embedded real-time systems with higher capacity but lower cost. For example, as a

leading microprocessor provider in embedded systems, ARM has released its ARMv8-A

structure with multi-core architectures, while a series of real-time operating systems, such

as VxWorks, have been upgraded to fully support multi-core processors.

For further improvement, CPU cache is considered, it increases the average speed of

accessing data , which fills in the gap between processor and memory speeds. However, the

complexity of cache behaviors lead to pessimistic estimate of WCET. For example, when

a task is running, references are loaded from the cache or the memory, the time of loading

instruction and data becomes unpredictable. Furthermore, in real-time preemption systems,

multiple reloads from memory to cache might be conducted due to preemptions. This

additional delay is CRPD. It will cause an identical delay in the worst-case execution time

(WCET) (Pellizzoni and Caccamo, 2007). Usually, when researchers and system designers

estimate the WCET, the overhead and hardware-related costs (including CRPD, context

switch and scheduler costs) will be included in theWCET of each task. In terms of schedule,

3

preemption has no cost, and the WCET of each task is fixed. As a result, the scheduling

problem becomes more relaxed. But on the other hand, the WCET is overestimated. In the

real system, the execution time will be far less than theWCET. The CPUwill be idle in most

of the time, which will cause a drastic waste of resources. Therefore, an improved approach

that decouples the WCET and CRPD is proposed. Under this circumstance, the previous

analysis cannot be used since the task execution time depends on its behavior whether the

data can be referenced on the cache or from the memory. To address these issues, various

methods have been proposed. In this thesis, we mainly focus on bounding CRPD to WCET

during the schedulability analysis.1

1.2. INFORMATION LEAKAGE IN REAL-TIME SYSTEMS

Predictability may lead to information leakage in real-time systems. Assuming that

all tasks finish execution at their WCET and that the released patterns are regular (periodic),

then execution sequences of given tasks are identical from one hyper-period to another,

under any classic scheduler (e.g., earliest deadline first (EDF) or deadline monotonic).

Thus, a duplicated execution sequence can be detected and used to derive the executing

information.

Since tasks access memory with regularity (the execution sequences are the same

in different hyper-periods), adversaries can exploit the access time stamps of cache ad-

dresses during execution (Lipp et al., 2016) and derive the execution pattern of the system.

Moreover, attackers are able to gauge the precise execution time range of the critical/target

task (Chen et al., 2015) and further obtain the critical information of the critical task stored

in the cache by launching side-channel attacks (Chen et al., 2015; Yarom and Falkner, 2014)

on the critical task.
1The original work was published on ICESS 2017 (Proceedings of the 14th IEEE International Conference

On Embedded Software and Systems) Zhang et al. (2017). The introduction part have been rewritten by the
author.

4

To defend against such attacks, the key is to decrease predictability of the execution

sequence while guaranteeing schedulability of the given task set. Since these two aspects

seem to contradict each other, an intuitive solution is to break the execution pattern so that

the task execution sequences become varied in different hyper-periods. Hence, randomized

scheduling schemes are applied to real-time critical systems, which makes it difficult for

the attacker to derive a proper time range for a targeted task. Yoon et al. (2016) proposed a

randomization scheduling protocol, TaskShuffler, which randomly enumerates the execution

sequences of tasks. At each scheduling point, it first forms a candidate task set based on the

inversion budget, then selects a task from the candidates with equal probability to decrease

the regularity in the execution sequence.

Unfortunately, there are some limitations to the existing work. First, a pessimistic

inversion time budget leads to a limited candidate task set. Due to the overestimation of

higher priority jobs’ workloads, some lower priority jobs are not in the candidate set though

they are eligible for executing without affecting the schedulability. Second, the uniform

distribution of task selection overlooks the side effect of job selection in further time slots;

the job’s execution is less uncertain because of the current decision.

Based on the aforementioned observations, this thesis proposes a novel scheduling

method, roulette wheel scheduler (RWS), for preventing execution pattern leakage while

guaranteeing the real-time correctness of a given system. The details of RWS will be given

in Section 5.

1.3. CONTRIBUTION AND ORGANIZATION

In this paper, we study the schedulability of EDF on multiprocessor systems taking

into account the CRPD and derive a tight bound of CRPD under such settings. We propose

a novel CRPD analytical approach that extends the existing the state of the art of CRPD

analysis (Ju et al., 2007; Lunniss et al., 2013) to GEDF scheduling. Specifically, while

existing works (Ju et al., 2007; Lunniss et al., 2013) assumes that each released job of tasks

5

causes a preemption of shared cache to the job in execution, therefore all cache blocks are

inferred densely in an uniprocessor, our work leverages the nature of the sparse interferences

between cache blocks distributed on multi-cores/multi-processors (Sebek, 2001).

To address the scheduling information leakage, a new scheduling algorithm, RWS is

proposed, which can help the system to prevent the information leakage from the scheduling

pattern. RWS provides a new scheduling rule for generating the task execution pattern in

a randomized manner while guaranteeing timing correctness. By carrying uncertainty for

the task’s execution at each scheduling point, it tries to maximize the randomness of the

schedule and distribute the different execution sequences evenly at each hyper-period.

The main advantages of RWS are summarized as follows:

• Roulette wheel selection strategies have been widely applied in industry (Tao et al.,

2013); they are easy to utilize in practical systems to deal with the scheduling prob-

lems (Omara and Arafa, 2010). Hence, RWS can be applied to real-time systems

without modification of the system architecture.

• RWS can be used with fixed or dynamic priority scheduling algorithms.

• RWS considers all activated jobs as candidates at each scheduling point to enhance the

anonymity of the execution sequence. In other words, every candidate can be selected

to execute between two scheduling points while guaranteeing the schedulability.

• Offline RWS can reach the maximum scheduled entropy under system settings. As

far as is known, this is the first work that can achieve optimal entropy under a given

set of scheduling points.

• RWS is sustainable. The scheduling point can be set by adjusting the length of time

slices according to various system settings and task sets.

6

Organization: The rest of the thesis is organized as follows: The next section

(Section 2) consists of a literature survey of previous works. Section 3 presents the system

model and notations for analyzing the CRPD in multi-core real-time systems. Then we

introduce GEDF-CRPD Test – a new GEDF schedulability test on multiprocessors for

CRPD analysis in Section 4. We extend the current CRPD analytic method to a multi-core

system and propose an improved approach to bounds the CRPD via our GEDF-CRPD Test.

Upon comparison to existing approaches, the experimental results show that our method

converges to the demand bound function (DBF) with a tighter margin than other methods.

Section 5 discusses a the detailed adversary model when considering the side-channel

attack. The offline and online RWS randomization scheduling protocols for dealing with

schedule information leakage are proposed. Section 6 summarizes the thesis.

7

2. LITERATURE REVIEW

In this section, three categories of papers will be reviewed: GEDF schedulability

analysis, integration of CRPD into uni-processor EDF schedulability analysis, and cache

side-channel attacks in real-time systems.

2.1. GEDF SCHEDULABILITY ANALYSIS

To understand the response time of embedded real-time systems, a number of

studies (Baker, 2003, 2005; Baruah, 2007; Liu and Layland, 1973a) have been done to

analyze schedulability in multi-processors.

As early as 1973, to analyze the performance of earliest deadline first (EDF) schedul-

ing in the multiprocessor, Liu and Layland (1973a) studied a sufficient condition for guaran-

teeing schedulability of all tasks. Then, to derive themaximumexecution (time) requirement

for each task set, Baker (2003, 2005) proposed a global EDF (GEDF) schedulability test.

Later in 2007, Baruah (2007) and Bertogna and Cirinei (2007) improved the GEDF test and

developed a new schedulability test. Most recently, Sun and Lipari (2015) proposed a new

schedulability test through response time analysis for GEDF.

However, existing studies onmultiprocessors (multi-core) rarely take into considera-

tion the delay caused by preempting shared resources. Most existing schedulability analyses

are based on certain unrealistic assumptions, such as a zero time cost for preempting a shared

resource. Note that preemption of shared resources commonly occurs in multiprocessor

(multi-core) systems and could cause significant performance degradation (e.g., missing

deadlines) in worst-case scenarios (Altmeyer et al., 2012; Buttazzo, 2011; Davis and Burns,

2006). One common way to estimate the delay is to multiply the worst-case execution

time parameters by a certain factor to cover potential delays caused by preempting shared

resource – but this is often overly pessimistic (Staschulat et al., 2005).

8

2.2. INTEGRATE CRPD INTO EDF ANALYSIS ON UNI-PROCESSOR

Among a wide range of delays caused by shared resources such as bus and main

memory (Davis and Burns, 2006; Kim et al., 2014), cache-related preemption delay

(CRPD) (Negi et al., 2003) is a crucial factor of schedulability guarantee in multiprocessor

systems; however, CRPD is usually overestimated under EDF scheduling settings Baker

(2003, 2005). In 2007, Ju et al. (2007) integrated the CRPD into EDF schedulability

analysis in uniprocessor settings, where they took all possible direct preemptions of a sin-

gle job into account. Following Ju’s attempts, Lunniss et al. (2013) proposed an extended

CRPD analysis for EDF, where they leveraged an ECB-union multiset approach and UCB-

union multiset approach to bound the CRPD. This result provided a tighter bound of CRPD

compared with the work of Ju et al. (2007).

Unfortunately, all aforementioned existing works only analyzes the CRPD for EDF

on uniprocessor platforms. The upper bound of CRPD is yet unknown under EDF schedul-

ing in multiprocessor embedded real-time systems.

2.3. CACHE SIDE-CHANNEL ATTACKS AND DEFENSE IN REAL-TIME SYS-
TEM

Cache side-channel attacks (Lipp et al., 2016) have become a hot topic in recent

years. Liu et al. (2015) showed an effective implementation of the PRIME+PROBE attack

against the last-level cache. They conducted their implementation on x86 processors. Later

on, 2016 introduced several attack case studies and extended the attacks to ARM processors

which make embedded devices vulnerable. Chen et al. (2015) proposed a schedule-based

side-channel attack on real-time systems. They injected a malware task into an idle period,

which then captured the idle and busy period in the system. With the help of task parameters,

attackers could reconstruct the execution sequence of the task set, which enabled them to

perform a successful side-channel attack later.

9

Due to thewide usage of ARMprocessors in real-time systems, real-time researchers

have proposed techniques to prevent information leakage. To prevent information leakage

from high-priority to low priority tasks, Gruss et al. (2016) and Gülmezoğlu et al. (2015)

introduced a cache flushing technique to clear up the items or invalidate the data from

the cache when a task finished execution. Without the data leakage, attackers cannot

further exploit the priority order and predict the execution pattern. In 2014, Mohan et al.

(2014) provided a cache flushing method for defending against cache side-channel attack

at the design phase. They mainly focused on fixed priority (FP) scheduling algorithms.

Based on this work, Pellizzoni et al. (2015) proposed a generalized model for defending the

potential information leakage in all possible shared resources. Meanwhile, some researchers

tried to raise the level of difficulty needed to derive the execution sequence. Yoon et al.

(2016) randomized the task execution so that attackers would have difficulty determining

the narrow time range of the targeted task, which increased the difficulty of launching

side-channel attacks.

10

3. MULTI-CORE SYSTEMMODEL AND NOTATIONS

In order to analyze the CRPD in GEDF schedulability test, we first describe the

system model, terminology, and notations used in the rest of the paper.

Workload. We consider a multicore system which has a fixed number of processors shared

on an on-chip one-level cache. Specifically, these processors do not have any private cache,

as demonstrated in Figure 3.1. Henceforth, no migration delay for tasks will be considered

due to no partitioning and no private cache. We assume a multiprocessor system with m

Figure 3.1. Cache model of the system: all cores share a same on-chip cache. Note that
tasks executing on different cores do not have resource interference with each other although
they share a common cache.

processors running a predefined sporadic task set under GEDF scheduling, with the total

number of tasks n� m. Each task τi is defined as a 3-tuple {Ci, Di, Ti}:

• Ci is the worst-case execution time for each job of the task.

• Di is relative deadline for each job.

• Ti means each job of a task would be released at least every Ti time units.

Each job has a absolute deadline di which occurs Di time units after its release time.

11

We consider a constrained deadline in our system such that Di ≤ Ti holds for all

tasks. We consider a preemptive execution model, where during execution of a task, the

executing job could be preempted or suspended at any instant, and its execution may resume

later on the same processor or another.

Correctness. For a given scheduling algorithm, if all tasks can be scheduledwithoutmissing

the deadline based on the specification of the system, we call the task set schedulable.

Task Period Deadline WCET
τ1 6 6 4
τ2 6 6 3.5
τ3 2 2 1

(a) A sample task set with three tasks.

(b) The GEDF schedule of the task set show in Table (a) (with two processors), where all tasks
are released at time 0. The second job of task τ3 preempts task τ2 at time instant t = 2 when all
processors are busy, while the third job of task τ3 is scheduled into an idle slot at time t = 4.

Figure 3.2. GEDF scheduling of a sample task set.

In this paper, we consider the GEDF scheduling algorithm in multi-processor sys-

tems. GEDF is a dynamic scheduling algorithm that will place processes in a priority

queue. A task’s priority is assigned by the system based on its deadline. The task that

has the earliest absolute deadline will have the highest priority; the task that has the latest

absolute deadline will have the lowest priority Baruah (2007).

12

Example 3.0.1. Consider the task set shown in Figure 3.2 (a), which can be correctly

scheduled under GEDF (with the absolute deadline) as demonstrated in Figure 3.2 (b).

Assuming a job arrived with an earlier absolute deadline, it is first scheduled into the idle

time slots. If all the m processors are busy at that time instant, this newly released job will

preempt the job with the lowest priority. Upon completion, a processor would choose from

the pending jobs the one with the highest priority to execute.

Observation 1. Under the system and cache model are shown in Figure 3.1, for any newly

released job to begin its execution at time t0, if all processors are busy, the following two

conditions must hold:

• Among the executing jobs, there are lower priority ones (i.e., with later absolute

deadlines) than the job of interest.

• Only the job with the lowest priority that was executing will be preempted while all

other jobs will not be preempted – they will continue their executions until a new job

releases or they are finished.

Notation. Assume that a job with the earliest absolute deadline has a higher priority. Let

hp(i) denote the set of tasks with smaller relative deadlines (and which can preempt task

τi); i.e.,

hp(i) = {∀τj |D j < Di}. (3.1)

Let Pj(Di) denote the maximum number of jobs belonging to task τj that are invoked

during the executing a single job of task τi:

Pj(Di) = max
(
0, d

Di − D j

Tj
e

)
. (3.2)

13

Let Ei(t) represents the maximum number of jobs from task τi, which have their

release times and deadlines within the time interval of length t and that of task τi that can

be invoked. We calculate Ei(t) as follows:

Ei(t) = max
(
0, 1 + d

t − Di

Ti
e

)
(3.3)

Demand Bound Function. We use DBF(τi, t) (Goossens et al., 2003) to generate the

maximum execution requirement from the jobs of τi that have both the arrival time and

deadline within the time interval of length t. It can be calculated as follows:

DBF(τi, t) = max
(
0,

(
b
t − Di

Ti
c + 1

)
· Ci

)
(3.4)

where Ci is the Worst Case Execution Time (WCET) for a task τi. In GEDF scheduling,

tasks can execution in different cores simultaneously, Note that the inter-core interference

when tasks are running is taken into account in WCET.

To analyze the CRPD, we use the concept of useful cache block (UCB) and evicting

cache block (ECB).

Lee et al. (1998) provided the definition for UCBs as “A memory block m is called

a UCB at program point P, if it is cached at P and will be reused at program point Q that

may be reached from P without the eviction of m". The memory blocks are loaded into the

cache when a preempting task evicts other tasks, which are called ECBs. Combining the

concept of UCBs and ECBs can help us in deriving a bound for CRPD.

Figure 3.3. A job of task τk with arrival time at ta and misses its deadline at td . t0 is the
time instant that at least one of the m processor is idle.

14

4. GEDF-CRPD: A MULTIPROCESSOR GEDF SCHEDULABILITY TEST FOR
CRPD ANALYSIS

This section describes howCRPDanalysis can be integrated into the existing schedu-

lability test for GEDF on a multiprocessor platform. In order to do so, in Section 4.1, we

briefly introduce the widely accepted GEDF schedulability analysis without incorporating

CRPD. Then in Section 4.2, we propose four different methods to integrate CRPD into

demand bound functions in GEDF schedulability analysis.

4.1. GLOBAL EDF SCHEDULABILITY TEST

Liu and Layland (1973a) explored the global multiprocessor scheduling of implicit

deadline task. They gave a sufficient condition for guaranteeing that any task would not

miss its the deadline:

usum(τ) ≤ m − (m − 1) · umax(τ). (4.1)

In Equation 4.1, m denotes the number of processors, usum(τ) represents the total utilization

and umax(τ) represents the maximum utilization.

Later in 2007, Baker (2003, 2005) designed the GEDF schedulability test from a

different perspective. He assumed that the task τk missed its deadline, and then determined

the necessary conditions for other tasks, which resulted from task τk missing its deadline.

As a result, the negation of the necessary condition is a sufficient condition to guarantee all

deadline being met for the task set.

In 2007, Baruah (2007) designed a more sophisticated GEDF schedulability test that

overcame some shortcomings in Baker’s test. Similarly, he obtained a necessary condition

that would let a job of task τk be the first to miss its deadline. When the necessary condition

was not satisfied, then task τk would not have missed its deadline.

15

Based on this idea, we set td is the time instance that a job of τk first missed its

deadline, we use ta to denote this job’s arrival time, where ta = td − Dk and t0 as the latest

time instant ≤ ta, at which at least one processor is idle in GEDF scheduling (Figure 3.3), In

order to satisfy the deadline miss occurrence, it is necessary that all m processors execute

jobs other than τk’s job more than (Dk − Ck) time units in the time interval [ta, td]. Hence,

the total amount of execution requirement that execution in this interval t should satisfy is:

∑
τi∈τ

I(τi) > m · (Ak + Dk − Ck). (4.2)

We defined a time period Ak = ta − t0 in Equation 4.2, and I(τi) denotes the

contribution of τi to work done in GEDF schedule during [t0, td].

If a task τi contributes no carry-in work1 and the task τk does not miss its deadline,

the contribution of τi to the total workload combined with the demand bound function

should not exceed the Equation 4.3:

I1(τi) = min(DBF(Ti, Ak + Dk), Ak + Dk − Ck). (4.3)

Based on Baruah’s work, we establish that the total amount of execution demand

for tasks should not exceed the total amount of slack time period in m processors. The

Equation 4.1 can be extended to the following format:

n∑
i=1

max(0, b(t − Di)/Tic + 1)Ci ≤ m · (Ak + Dk − Ck). (4.4)

Without considering theCRPD inGEDF scheduling, the deadlineswill bemet, when

the demand bound function satisfies Equation 4.4. However, for GEDF in a multiprocessor

systems, when a higher priority task preempts lower priority tasks, the introducedCRPDwill

enlarge the demand bound function significantly, and the current sufficient condition cannot

1Carry-in work means that a job is released before t0 and completes execution before td .

16

necessarily guarantee the schedulability of any sequence of tasks under GEDF scheduling.

Figure 4.1 demonstrates that the given task set is no longer schedulable under GEDF when

considering CRPD. Therefore, in the following subsection, CRPD will be integrated into

the GEDF schedulability test framework introduced in this subsection.

Figure 4.1. GEDF schedule of the taskset shown in Fig 2(a), where CRPD is taken into
consideration and the first job of τ2 misses its deadline at time t = 6.

4.2. INTEGRATE CRPD INTO GEDF SCHEDULING

For a given task, DBF calculates the execution requirement in the interval of length

t. When considering the CRPD in GEDF scheduling, the execution requirement for each

job of the task τi should integrate the cache reload time γi:

∑
DBF(τi, t) =

n∑
i=1

max
(
0, b

t − Di

Ti
c + 1

)
· (Ci + γi). (4.5)

In the remainder of the subsection, we will present four different approaches to

calculating and bounding the CRPD, γi.

17

(A) Ju’s Approach. Ju et al. (2007) presented an approach to integrate the CRPD

analysis into uniprocessor EDF schedulability analysis. This approach first calculated the

number of blocks belonging to τi that are directly preempted by task τj multiplied by Pj(Di).

Pj(Di) is the maximum times that the task τj preempts a single job of task τi. In order to

find all possible direct preemptions, the higher priority tasks that could preempt task τi are

summed. These higher priority tasks τj are represented as j ∈ hp(i) while γJu
i represents

the CRPD calculated by Ju et al. (2007):

γJu
i = BRT ·

(∑
j∈hp(i)

Pj(Di) ×

���UCBi ∩ ECB j

���) . (4.6)

where BRT is the per cache block reloading time. We modify Equation 4.5 and substitute

γi from Equation 4.6, so that the CRPD can be calculated in DBF for GEDF schedulability

analysis.

However, applying this method into GEDF would overestimate CRPD in a unipro-

cessor. For instance, if a task τj could preempt τi in a time instant, but the task τi has

already been preempted by a higher priority task τk , this approach will calculate all possible

preemptions into τi’s response time, which pessimistically estimates the preemption time.

Lunniss et al. (2013) provided an improved CRPD analysis for EDF scheduling in

uniprocessor systems in 2013. They used γt, j to represent the E j(t) times of the preemptions

cost for preempting tasks. These jobs would have had their release times and absolute

deadlines in an interval of length t.

We can apply this concept in CRPD analysis under GEDF scheduling. Therefore,

the DBF could be changed into the following format:

∑
DBF(τj, t) =

n∑
j=1

(
max{0, b

t − D j

Tj
c + 1} · Cj + γt, j

)
. (4.7)

18

There are mainly three approaches for calculating γt, j in Equation 4.7: (B) ECB-

union multiset2, (C) UCB-union multiset approaches and (D) combined multiset approach,

which are extended by Lunniss et al. (2013) to EDF scheduling based on the work of

Staschulat et al. (2005) in fixed priority for the uniprocessor.

(B) ECB-union Multiset Approach. Nested preemptions make the pessimistic

assumption that for any preemption by task τj , the task τj itself may have already been

preempted by a higher priority task. The total number of times that the jobs of task τk can

be preempted by jobs of task τj is equal to Pj(Dk) × Ek(t). Therefore, the multiset Mt, j

could be formed as follows:

Mt, j =
⋃

∀k∈aff (t, j)

(⋃
Pj (Dk)×Ek (t)

���UCBk ∩ (
⋃

h∈hp(j)∪ j

ECBh)

���) . (4.8)

In the time interval t for each processor, the job of task τj could at most invoke E j(t)

times, therefore, the ECB-union multiset approach bounds the CRPD by summing the E j(t)

largest value in the multiset Mt, j as shown in the following equation:

γecb−m
t, j = BRT ·

Ej (t)∑
l=1
|M l

t, j |. (4.9)

BRT is the per block reloading time and γecb−m
t, j represents the CRPD calculated by ECB-

union multiset approach.

(C) UCB-union Multiset Approach. This approach also uses the concept of

multiset. Lunniss et al. (2013) first forms the multiset Mucb
t, j . This multiset includes

Pj(Dk)×Ek(t) times preemption of each task τk caused by task τj . Each time of preemption

is represented by a set of cache blocks that might be preempted by task τj . Task τk whose

2Multiset is like a set, but it allows duplicate elements. For instance, {a, a, b} and {a,b} are not the same
multiset. However, the order does not matter. For example, {a, a, b} and {a, b, a} are the same multiset.

19

relative deadline is greater than task τj’s in the time interval [0, t) is presented as aff (t, j):

Mucb
t, j =

⋃
∀k∈aff (t, j)

(⋃
Pj (Dk)×Ek (t)

UCBk

)
. (4.10)

This forms the ECB multiset Mecb
t, j , which contains the cache blocks that could be

evicted by the jobs of task τj . Since τj invoked at most E j(t) times, the Mecb
t, j contains E j(t)

times repeated ECBs preempted by a single job of τj :

Mecb
t, j =

⋃
Ej (t)

(ECB j). (4.11)

Finally, the intersection of Mucb
t, j and Mecb

t, j is multiplied by the BRT obtaining the

CPRD, which is represented by:

γucb−m
t, j = BRT · |Mucb

t, j ∩ Mecb
t, j |. (4.12)

where BRT is the per block reloading time and γucb−m
t, j indicates the CRPD calculated by

the UCB-union multiset approach.

(D) CombinedMultiset Approach. Since the UCB-union multiset and ECB-union

multiset approaches are not comparable Lunniss et al. (2013), we get the minimum of these

two results applying to the total DBF equation, which is represented as follows:

∑
j

DBF(τj, t) =∑
j

min{DBF(τj, t)ucb−m,DBF(τj, t)ecb−m}.

(4.13)

where DBF(τj, t)ucb−m indicates DBF obtained through the UCB-union multiset approach,

Similarly, DBF(τj, t)ecb−m represents DBF obtained by applying the ECB-union multiset

approach.

20

Until now, we studied the GEDF schedulability test in a multiprocessor systems and

integrated the CRPD into GEDF in multiprocessor systems. Moreover, we proposed four

approaches to analysis the CRPD under GEDF. However, the ECB-union multiset approach,

UCB-union multiset approach, and combined multiset approach assume that each released

job of tasks can cause preemption of a shared cache. The maximum number of preemption

times is decreased in a multiprocessor when compared to a uniprocessor. We will present

improved CRPD analysis in Section 4.3.

4.3. AN IMPROVED CRPD UPPER BOUND ANALYSIS

In a multiprocessor system, approaches (A), (B), (C) and (D) given in Section III-

B, usually over-estimate the CRPD under GEDF scheduling since they assume that each

released job of tasks could generate a preemption cost. However, the cache interference of

tasks would be reduced in the multiprocessor. Thus, we leverage the nature of the sparse

interference between cache blocks distributed on the multiprocessor to obtain a tighter

bound of CRPD.

4.3.1. Condensing the Multiset. One of the main difference between a uniproces-

sor and a multiprocessor is that the first m tasks with the earliest relative deadline would not

be preempted by other tasks in the multiprocessor. According to observation one, if one of

these tasks begins to execute when released then there exists some task in execution with an

absolute deadline later than the first m task’s absolute deadline. If the released task has a

lower priority compared with some task with a later absolute deadline, the task would wait

until one of the jobs completes execution in m processors.

Multiset approaches would include all the useful cache blocks that may be evicted

in the time interval of length t. Since the first m tasks with the earliest relative deadline

would not be preempted, these approaches all overestimate the affected cache blocks.

21

In the ECB-unionmultiset approach shown in Equation 4.8, when the task τk belongs

to the task set {τ1, τ2, · · · , τm}, the intersections between UCBs and ECBs are considered

empty in a multiprocessor system. Therefore, unless these values are not the lth largest

value in multiset M , the result will overestimate the CRPD. The equation below rectifies

the limitation of Equation 4.8:

���UCBk ∩ (
⋃

h∈hp(j)∪ j

ECBh)

��� = ∅, k = 1, · · · ,m. (4.14)

Similarly, in the UCB-union multiset approach, since the first m tasks will not be

preempted, we can simply treat the UCB of these tasks as empty for calculations; and then

obtain the following bound:

(⋃
Pj (Dk)×Ek (t)

UCBk

)
= ∅, k = 1, · · · ,m. (4.15)

4.3.2. Reducing theMaximumNumber of Preemptions. In themmultiprocessor

system with the GEDF scheduling algorithm (Figure 3.3), when we find that t0 is the idle

point in at least one processor, m jobs belonging to different tasks in execution are in any

time instant between t0 and ta. If a single job of task τi is released at a time instant ti, even if

it has the earliest absolute deadline, it would only preempt the task τl with the latest absolute

deadline. Other tasks are not interrupted by the task τl . In this situation, their response

time would not be extended by preemptions. The total number of invocation times for the

higher priority tasks would be reduced when compared with the times in a uniprocessor.

Therefore, the total preemption time can be decreased.

In a multiprocessor, when a task is preempted, it could resume in any processor

including the processor it utilized before. We also include this case into the CRPD analysis

since it could bring extra cache reloading time. With this underlying assumption, we mainly

focus on how many preemptions occur in the time interval of length t.

22

In order to find the worst-case preemption time, we first assume there are n tasks

in the system, and every single job of a task released would cause a preemption. We let

the tasks with the latest m absolute deadline execute first, then release the second m tasks

with a higher priority. The higher m priority tasks could preempt all the tasks executed

in the processor, until the task with the earliest absolute deadline is released in one of the

processors.

In this situation, the total preemption time should be n − m when all jobs belong

to different task complete the first time release. In fact, no matter the sequence of tasks,

the total preemption time in the first time invocation for different tasks would not exceed

(n − m) times. Hence, we can subtract the mth least preemption cost from the total CRPD.

Through condensing the multiset M in the combined multiset approach and refining

the estimation of maximum preemption time, we can further estimate the tighter bound of

CRPD in the multiprocessor case:∑
j

DBF(τj, t) = −
m∑

i=1
Gm+∑

j

min{DBF(τj, t)ucb−D,DBF(τj, t)ecb−D}

(4.16)

where G denotes the interfered cache blocks for the first released job of each tasks and Gm is

the mth minimal interfered cache blocks set. We use DBF(τj, t)ucb−D to represent the DBF

calculated using condensed UCB-union multiset approach and DBF(τj, t)ecb−D to indicate

the DBF calculated by the condensed ECB-union multiset approach.

4.4. EXPERIMENTAL AND EVALUATION

In this section, we evaluate the effectiveness of the different approaches in preemp-

tion cost computation of a large number of task sets with varying task set parameters. The

task parameters used in our experiments were randomly generated as follows:

– The number of cores(m) is 2, 4, 8.

23

– The default task size is 15.

– The total number of task sets is 100.

– Task utilizations were generated using the UUnifast-discard algorithm Bini and

Buttazzo (2005).

– Task period were generated according to a uniform distribution with a factor of 100

differences between the minimum andmaximum possible task period and minimum periods

of 5ms to 500ms, as found in most automotive and aerospace hard real-time applications.

– Task execution times were set based on the utilization and period selected: Ci =

Ui · Ti

– Task deadlines were implicit, i.e., Di = Ti

– Priorities were assigned in deadline monotonic order.

The following parameters affecting preemption costs are given below, the default

values is given in parentheses:

– The number of cache-sets (CS=256).

– The cache reuse factor is 80%.

– The block-reload time (BRT = 8 µs)

– For each task, the UCBs of each task were assigned randomly based on the result

on Altmeyer et al. (2011)’s result.

The experiment shows how the integrated CRPD and global EDF schedulability

analysis performed under the default configuration for an implicit deadline task set. We

varied the utilization from 0.5 tom, and record howmany task sets were deemed schedulable

by the global schedulability assuming no preemptions. Thenwe compared this experimental

result with the cases under different CRPD analysis approaches in global EDF.

The Figure 4.2, Figure 4.3 and Figure 4.4 show the result of 2 cores, 4 cores

and 8 cores respectively. Each figure compared five approaches we proposed before.

GEDF_CRPD_Ju describes the global EDF schedulability test for CRPD analysis based

on Ju et al. (2007)’s work; i.e., Approach (A) in Section 4.2. GEDF_CRPD_ECB repre-

24

sents the schedulability test based on ECB-union multiset approach; i.e., Approach (B) in

Section 4.2. GEDF_CRPD_UCB represents the schedulability test based on UCB-union

multiset approach; i.e., Approach (C) in Section 4.2. GEDF_CRPD_cb represents the

schedulability test based on combined multiset approach (i.e., Approach (D) in Section III-

B.) and GEDF_CRPD_cb represents the schedulability test based on condensed multiset

approach with the technology described in Section 4.2.

1

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Utilization

0

20

40

60

80

100

Sc
he

du
la
bl
e
Ta
sk
se
t R

at
e(
%
)

GEDF_CRPD_Ju
GEDF_CRPD_ECB
GEDF_CRPD_UCB
GEDF_CRPD_cb
GEDF_CRPD_cd

Figure 4.2. Evaluation for five CRPD analysis approaches: the number of tasksets could be
schedulable at different total utilization in two processors.

After analyzing the figures, we find that GEDF_CRPD_Ju approach performs worst.

Since it computes all possible preemptions caused by higher priority into a single job of

tasks in DBF. Although the single direct preemption costs are precise, the total cost is

very pessimistic. It overestimates the total cost of preemption. GEDF_CRPD_ECB and

GEDF_CRPD_UCB approaches outperformed the Ju’s approach. These two approaches

have a very close performance with our task set. GEDF_CRPD_cb approach adopts the

minimum value of GEDF_CRPD_ECB and GEDF_CRPD_UCB. Therefore, It performs

better than these two approaches sometimes. Due to considering the sparse cache-block

25

interference and refining the estimation of maximum preemption time in the multiprocessor,

GEDF_CRPD_cd approach has the best performance with our task set. The experimental

result shows that GEDF_CRPD_cd gives a tighter bound of CRPD.

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9
Utilization

0

10

20

30

40

50

60

70

80

90

100
Sc
he

du
la
bl
e
Ta
sk
se
t R

at
e(
%
)

GEDF_CRPD_Ju
GEDF_CRPD_ECB
GEDF_CRPD_UCB
GEDF_CRPD_cb
GEDF_CRPD_cd

Figure 4.3. Evaluation for five CRPD analysis approaches: the number of tasksets could be
schedulable at different total utilization in four processors.

0.5 0.9 1.3 1.7 2.1 2.5 2.9 3.3 3.7 4.1 4.5 4.9 5.3 5.7 6.1 6.5 6.9 7.3 7.7
Utilization

0

10

20

30

40

50

60

70

80

90

100

Sc
he

du
la
bl
e
Ta
sk
se
t R

at
e(
%
)

GEDF_CRPD_Ju
GEDF_CRPD_ECB
GEDF_CRPD_UCB
GEDF_CRPD_cb
GEDF_CRPD_cd

Figure 4.4. Evaluation for five CRPD analysis approaches: the number of tasksets could be
schedulable at different total utilization in eight processors.

26

5. RWS - A ROULETTEWHEEL SCHEDULER FOR PREVENTING
EXECUTION PATTERN LEAKAGE

As the introduction presents, the cache side-channel attacks will leak critical in-

formation to the attackers. Hence, in this section, a novel scheduling algorithm will be

presented - RWS. The section is organized as follows: in Section 5.1, the system model will

be redefined, and the potential threat of cache side-channel attacks will be discussed. RWS

will be elaborated in Section 5.2. Finally, Section 5.3 is the evaluation and the discussion

of RWS.

5.1. SYSTEMMODEL AND ADVERSARY MODEL

5.1.1. SystemModel and Terminology. We consider a predefined workload to be

run on a fully preemptive uni-core discrete system. All parameters of tasks are integers. The

workload consists of a set of periodic tasks τ = {τ1, τ2, · · · , τn} is synchronous. All tasks

have implicit deadlines, so each task can be denoted as (Ci,Ti), where Ci is the WCET, and

Ti is the period. A periodic task τi may generate an infinite number of jobs {τi,1, τi,2, · · · },

where consecutive releases must be Ti time units apart. As an instance of a task, each job

τi, j can be characterized by 3-tuple (ai, j, ci, j, di, j):

• ai, j ≥ 0 denotes its release time (the first moment that the job can start to execute);

• ci, j = Ci is the WCET;

• di, j = ai, j + Ti is the absolute deadline.

A job’s priority is assigned by the the absolute deadline: any job with an earlier

absolute deadline holds a higher priority. We use hep(τi, j) to represent the jobs with

deadlines at or before di, j , and lp(τi, j) to denote the jobs with deadlines after than di, j .

27

System. We consider a uniprocessor platform. The technique can apply to a multiprocessor

system if it is scheduled under fully partitioned scheme.

Remark 1. In this thesis, we assume the predefined task set is feasible (since we are

considering a uni-processor system), i.e., schedulable under the EDF scheduling algorithm,

that satisfies:
n∑

i=1

Ci

Ti
≤ 1 (5.1)

its demand bound function db f (t) Baruah et al. (1990) at a time instant t should satify:

db f (t) =
n∑

i=1

(⌊
t − Di

Ti

⌋
+ 1

)
Ci ≤ t. (5.2)

5.1.2. AttackModel andMotivation. Under such system settings, we assume that

an attacker has a priori knowledge of the task set’s parameters and the scheduling policy.

The main goal of an adversary is to utilize the deterministic schedules to launch an attack at

a specific time instant on the targeted task. Attackers are able to obtain sensitive information

(e.g., a cryptography key) of the targeted task by side-channel attacks. For example, a system

might be running an encryption task1 periodically with a given input. The attacker can fill

in the cache set first at the beginning of the task. After the targeted task finishes executing,

attackers can read the cache blocks, measure the latency, and derive the crypto key (Lipp

et al., 2018), as demonstrated in Figure 5.1.

To perform such attacks successfully, attackers should be aware of the execution of

a targeted task. With the prior knowledge of task parameters and the scheduling algorithms,

attackers can derive the precise time range of the targeted task so that they are able to

launch cache side-channel attacks at the beginning and the end of the targeted task to get the

unencrypted data stored in the cache. However, if attackers launch the attack at arbitrary

1A encryption task is a task which performs an encryption algorithm to generate a ciphertext, such as
RSA (Rivest et al., 1978). The plaintext is hard to retrieve without the key. Attacks like brute-force are
unlikely to succeed to retrieve the plaintext. Recently, side-channel attacks on RSA which can retrieve the
plaintext in a short time have been proved (Bauer et al., 2014).

28

PROC

side-channel
attacks

Figure 5.1. A potential attack by utilizing the deterministic schedules in real-time systems.
The task filled with diagonal lines is an encryption task. After the attacks, attackers are
capacble to retrieve the un-encrypted data.

instants, it is highly possible that the cache is filled with other unrelated data that does not

belong to the targeted task. It would not know whether the attack has been successful or

not (key data is retrieved).

Hence, the first step of such attacks is to monitor the system activities and to exploit

the precise execution sequence of the task set (Chen et al., 2015), which can help obtain the

narrow execution time range of the targeted task. Take EDF as an example, attackers can

build the schedule offline according to the task parameters; then, based on current system

activities like the idle and busy period, the attackers can find the beginning of a hyper-period

if a repetitive execution sequence exists. Therefore, the narrow time range of the targeted

task can be derived, leading to very high success rate to data intrusion attacks.

As demonstrated in Example 5.1.1, the given task set is scheduled under the EDF

scheduling algorithm, where task executions are fixed at each scheduling point, so the

execution sequence is the same in two different hyper-periods. Attackers can successfully

launch attacks because of the predictability of the scheduler.

Example 5.1.1. Consider a task set τ = {τ1, τ2} with parameters shown in Table 5.1. As-

sume both tasks release their first job synchronously. The task set’s execution sequence

under EDF scheduling algorithm is shown in Figure 5.2 (Proc), where the execution se-

quence in [0,6) is the same as the execution sequence in [6,12). The execution pattern

is 〈τ1, τ2, τ1, idle〉 in every hyper-period. From the attackers’ view, it is possible that the

29

execution sequence can be derived with the execution information in one hyper-period as

shown by Chen et al. (2015). Assuming Task τ2 contains sensitive information, the attacker

can now launch a cache attack at time t=9 to obtain it. While for the randomized scheduler,

it is unlikely that the second job of τ2 will be at hot-cache state at t=9 (and in the example

t=12 is the only time point for the attack to work, which is becomes a challenging guess for

the attacker).

Table 5.1. Parameters of a task set.

Task WCET (Ci) Period (Ti)
τ1 1 3
τ2 2 6

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

τ1

τ2

Proc

Proc_R

Figure 5.2. The line Proc is the execution sequence of the task set under the EDF schedul-
ing algorithm, while the line Proc_R represents one possible scheduling scenario under
randomized scheduling.

Assumption. We assume that the scheduler is trustworthy, i.e., the scheduler cannot be

attacked. Otherwise, adversaries have a large attack surface to utilize. For example,

adversaries can change the scheduling algorithm at an arbitrary instant in time to break the

timing correctness, or they can make specific tasks always miss their deadline by changing

the priorities. Also, we do not consider denial-of-service attacks (Neumann, 2000) as they

are easily detected by the system. For example, when attackers insert dummy tasks, the

response time of several tasks can exceed their deadlines. The system can detect these

abnormal behaviors and shut down the current task (Abdi et al., 2016; Gujarati et al., 2017)

30

running in the system. Hence, if the adversary launches a denial-of-service attack at an

arbitrary moment without the knowledge of the scheduling information, it is highly possible

that the inserted task will be dropped. Therefore, attackers’ intrusions remain in the system

as a normal task, carefully supervise the execution of the tasks before launching a precise

attack on the critical task.

5.1.3. Problem Definition. To protect the critical information in real-time systems

and to break the execution pattern of the task set under traditional scheduling algorithm,

we want to generate a new scheduler which can randomize the current execution sequence.

Instead of executing the job with the the highest priority (e.g., earliest deadline) at each

scheduling point, the new scheduling algorithmwill randomly select a job among a subset of

ready jobs. Therefore, the tasks’ execution sequence would be generated with randomness,

as shown in Proc_R of Figure 5.2, which greatly increases the chance of failure of cache

side-channel attacks.

To formalize the randomness in schedulers and to quantify the disorder among the

execution sequence, we apply slot entropy and schedule entropy (Son et al., 2006; Yoon

et al., 2016) to quantify the disorder, which refers to the concept of Shannon entropy (Shan-

non, 1948) in information theory.

Definition 5.1.1. (Slot entropy). Slot entropymeasures the uncertainty of the task execution

at a time instant t.2

H(t,S) = −
∑

τi, j∈J(t)

pi,t(S) × log pi,t, (5.3)

where pi,t(S) is the probability assigned to job τi, j at the scheduling point t for a schedule S.

Note that at any time, there will be at most one job belonging to a task in the ready queue.

Thus, we use i to index the release jobs. Slot entropy H(t,S) represents the randomness

2We use log instead of log2 from now on.

31

metric of the job set J(t) at scheduling point t. For the task execution sequence under a

given scheduling algorithm such as EDF, at any scheduling point, the selection of a job is

deterministic, so slot entropy remains zero for any slot.

Definition 5.1.2. (Schedule entropy). Schedule entropy H(S) is a measure of the non-

regularity associated with a given schedule S and a set of scheduling points L in a hyper-

period of length L.

H(S) =
∑
t∈L

H(t,S). (5.4)

Schedule entropy is associatedwith slot entropy since the probability distribution of a

job would influence the randomness of the execution sequence. Schedule entropy quantifies

the disorder of the execution sequence among different hyper-periods throughmeasuring the

randomness of task execution in one hyper-period. For traditional scheduling algorithms,

execution sequence is the same for two hyper-periods so H(S) is 0. Hence, we should

try to maximize the value of H(S) by increasing the randomness in the tasks’ execution

sequence, so that the possibility that execution sequences are the same in every hyper-period

decreases.

Therefore, our problem can be defined as follows:

given a job set J(t) = {τ1, j, τ2,k, · · · , τm,l} in the ready queue at time instant t, where

m ≤ n. All these jobs are ordered by their deadline in an ascending order. The assigned

probabilities pi,t to each job must guarantee that every job completes its execution on or

before the deadline, while the summation of the probability pi,t for executing each job cannot

exceed 1 at any time instant t:

∀τi, j ∈ J,Ri, j ≤ di, j − ai, j (5.5)

∀t,
n∑

i=1
pi,t ≤ 1, (5.6)

32

where Ri, j is the response time of τi, j which is the total amount of time between the job’s

release and completion time.

Our goal is to maximize the schedule entropy in a hyper-period under Constraint

(5.5) and (5.6):

max
S

H(S). (5.7)

5.2. ROULETTEWHEEL SCHEDULER

To solve the scheduling problem mentioned above, we first propose offline RWS to

randomize the execution sequence and generate different execution sequences with equal

probability at each hyper-period for a periodic task set. Due to the high time complexity of

the offline algorithm, we further provide an onlineRWS randomization scheduling algorithm

that can generate the schedule in real-time. Finally we provide the schedulability test for

the online RWS algorithm.

Table 5.2 lists the variables used in this section3.

Table 5.2. Preliminary Variables

Variable Definition
mi,t the length of the executed part of a job τi, j before time instant t
ri,t the remaining workload of a job τi, j at time instant t, i.e., ri,t = ci, j − mi,t
pi,t the probability assigned to the job τi, j at time t

hep(τi, j) a set of jobs with higher or equal priority than τi, j
lp(τi, j) a set of jobs with lower priority than τi, j
∆ the length of time slot

5.2.1. OfflineRWS. RWS is a strategy used to choose an item (among a set of items)

proportional to its probability. RWS is a scheduling method, which makes scheduling deci-

sions based on the probabilities of tasks while taking the schedulability into consideration.

3Index j is omitted for many variables for simplicity. It is safe to do so due to the reason that task can only
release at most one job at any time instant.

33

In detail, RWS works under slice setting; i.e., the timeline is sliced into mini-slots (slices)

of predefined length ∆. During run-time, each slice is assigned to one of the active jobs by

the scheduler according to their probabilities.

Example 5.2.1. Consider again the task set shown in Table 5.1 and Figure 5.2 of Example

5.1.1, the timeline Proc_R is divided into small slices of length ∆ = 1. At time instant 0,

we assume that two jobs are in the ready queue J(0) where their assigned probabilities are

p1,0 = 0.4 and p2,0 = 0.6. Then, RWS has a 40% chance of picking τ1,1 and a 60% chance

of picking τ2,1 at this time instant. Note that in RWS, one of the key factors is to assign the

time slices properly to jobs without violating the timing constraints.

We propose the offline RWS to randomize the execution sequence based on the time

slice of the length equal to ∆. Offline RWS will sort the jobs in one hyper-period to a job

queue J based on their priority allocation (the priority is determined by EDF scheduling

algorithm; for tasks with the same deadline, the task with a smaller period has a higher

priority). For every job τi, j in J, offline RWS randomly selects Ci/∆ time slots with in its

deadline, then sequentially assigns sufficient time slices for every job until an execution

sequence in a hyper-period is obtained. Then, it will iteratively execute this assignment

process at the beginning of each hyper-period.

Example 5.2.2. In Example 5.1.1, the sorted job queue is J = {τ1,1, τ1,2, τ2,1} in the first

hyper-period. Assume ∆ = 1, the timeline is divided into small slices as shown in Figure

5.3. At time instant 0, the scheduler will assign one of the three slices {s1, s2, s3}, {s4, s5, s6}

to τ1,1 and τ1,2 respectively (Figure 5.3). Then, it would pick two time slices from the

remaining four to execute τ2,1.

The process of choosing sufficient slices for jobs can be treated as a combination

problem (Table 5.3). Assume ∆ is divisible by Ci and Ti every job τi, j and at time instant

t, the slots which is available for τi, j to run is Bi, j . we randomly pick Ci/∆ time slices out

of Bi, j time slices for executing job τi, j , each job can generate
(Ci/∆

Bi, j

)
different execution

34

Table 5.3. Parameters of a task set.

Job WCET (Ci) Bi, j Combinations
τ1,1 1 3 3
τ1,2 1 3 3
τ2,1 2 4 6

0 1 2 3 4 5 6

PROC

Δ

s1 s2 s3 s4 s5 s6

τ2,1

τ1,1 τ1,2

Figure 5.3. The timeline PROC is divided into small slices; each slice is one-time unit. The
scheduler will assign sufficient time slices to each job at the beginning of a hyper-period.

sequences, combine all N job together to form a sequence in one hyper-period, total number

of combinations D is:

D =
N∏

i=1

(
Ci/∆

Bi, j

)
(5.8)

Hence, the scheduler is able to generate all possible combinations of execution

sequences D. However, not every execution sequence in D satisfies the schedulability.

Thus, there exists a D′ ∈ D which contains all correct solutions. Moreover, at the beginning

of each hyper-period, it randomly generates one of the combinations out of D and verifies

if this combination guarantees the time correctness for each task. Given that the possible

combinations can be exponentially huge, it is unlikely that the execution patterns from

two hyper-periods are identical. (e.g., Proc_R shows two possible execution sequences

in different hyper-periods). Specifically, since the combination problem generates equally

likely outcomes within the sample space D′, the probability of every valid combination

is 1/D′. Under this condition, the schedule entropy would be maximized. The schedule

35

entropy can be calculated as follows:

H(S) = −(
D′∑
i=1

1
D′

log2
1
D′
) = log2 D′ (5.9)

Limitations. Offline RWS runs in pseudo-polynomial time to generate the one possible

execution sequence due to the potentially exponential number of time slots in a hyper-period.

Moreover, it cannot guarantee the schedulability of the given task set when generating the

execution sequence.

5.2.2. Online RWS. To obtain a more efficient scheduler that is able to reduce the

time complexity of verifying the sequence when generating, we propose the online RWS

randomization scheduling approach.

Compared with the offline approach which generates the execution sequence at the

beginning of the hyper-period, the online RWS constructs the execution sequence slot by

slot. In detail, online RWS treats the beginning of every time slice ∆ as a scheduling point

and calculates the execution probabilities of each job in the waiting queue J(t). Then, it

makes the scheduling decision according to the execution probabilities.

In online RWS, jobs can be executed with probabilities since they allow priority

inversion during execution while guarantee the schedulability. Hence, the probabilities

should be assigned based on the ri,t and the possible idle time slots Bi,t which allow priority

inversion before its deadline.

The demand bound function db f (t) (Baruah et al., 1990) represents the total work-

load belonging to jobs that deadline before or in t. However, to guarantee the schedulability

of the task set, some jobs released before time t while having a deadline after the time

instant t should be executed some time slices before time instant t. We derive the adjusted

demand bound function Adb f (di) to bound the actual workload that should be done before

36

the jobs deadline di. We set the Adb f = db f at the end point of one hyper-period, then we

calculate the Adb f (di) from the end of a hyper-period to the beginning interactively based

on db f (di) (Figure 5.4).

0 1 2 3 4 5 6 7 8 9 10 11 12

proc
13 14 15 16 17 18

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18 20

Adjusted Demand Bound Function

demand bound function adjusted demand bound function

Figure 5.4. Assume a task set τ = {τ1, τ2, τ3} with parameters τ1 = (1, 3), τ2 = (3, 6) and
τ3 = (1, 9), the demand bound function is shown as a solid line in one hyper-period, while
the adjusted demand bound function is calculated from the end of the hyper-period shown
as the dash line.

Assume that the time period between two adjacent deadlines is l, we check the

workload that should be added in this period. The workload in this period is:

workload(l) = Adb f (di+1) − db f (di) − (di+1 − di). (5.10)

if the workload is less than 0, we keep the db f (di) unchanging, else we reset the

db f (di) as the following equation:

Adb f (di) = db f (di) + workload(l); (5.11)

based on the Adb f , we can determine the time slices that are available for each job

to execute, we define the semi-inversion budget.

37

Definition 5.2.1. (Semi-inversion time budget). For a job τi, j in the ready queue J(t) is

released at time instant t, the semi-inversion time budget is:

Bi, j(t) = di, j − t −
(
Adb f (di, j) −

∑
k,l:dk,l≤di, j

Mk,l(t)
)
+ Ci . (5.12)

Bi, j(t) represents the total amount of available time (from τi, j’s perspective) for

lower priority jobs (including job τi, j) to execute before the deadline di, j . Mk,l(t) is the total

executed workload amount of job τk,l before time instant t. Note that the budget Bi, j(t)

should be greater or equal to ri,t at any time instant t if the task set is schedulable under a

given scheduling algorithm; otherwise, τi, j will miss its deadline.

Since the onlineRWSmakes scheduling decision slot by slot, the scheduling decision

would influence the value of the budget, online RWS updates the budget based on the current

scheduling decision, which follows budget updating rule:

Budget Updating Rules. A job τi, j is selected to executed at a time slice, the budget for all

hep(τi, j) and itself Bi, j(t) should be decreased by the length of a time slice.

According to the budget updating rule, we could get a new Bi, j(t) for each job at a

scheduling point. Online RWS uses a greedy approach to make the scheduling decision:

the smaller the budget job, the higher probability of timely execution; so the later execution

decision will not be affected by jobs which are close to their deadline. Therefore, we

categorize jobs into three catehories: normal, urgent and protected according its updated

budget.

Definition 5.2.2. At a time instant t,

a job’s τi, j type =


Normal, if Bi, j(t) > ri,t

Urgent, if Bi, j(t) = ri,t

Protected, if ri,t = di, j − t

(5.13)

38

For the jobs in the current state at a scheduling point, online RWSmake the schedul-

ing decision according to the following Probability Assignment Rules:

• If a job τi, j is normal, then this job allows priority inversion; the probability of job

execution follows a certain distribution as shown in Equation (5.14).

• If a job τi, j is an urgent job, then this job cannot allow priority inversion. If jobs in

hep(τi, j) do not execute in this time slice, τi, j must be executed, otherwise it will miss

the deadline. Thus, the probabilities of jobs in lp(τi, j) will be zero, while the jobs in

hep(τi, j) and τi, j’s execution follow a certain distribution as shown in Equation (5.14).

• If a job τi, j is a protected job, then it must be executed in this time slice. The

probabilities for every other job is zero regardless of its priorities4.

In the combination problem, the jobs assigned to time slices follow a conditional

distribution in offline RWS; Therefore, to maximize the schedule entropy, the probability

assignment in online RWS aims at generating the equally likely execution sequence based

on the process in the offline RWS. Equation (5.14) calculates the job’s probability as:

Proc(τi, j) =
ri,t

Bi, j(t)
,

pi,t =
Proc(τi, j)∑

τi, j∈Q Proc(τi, j)
. (5.14)

Where Proc(τi, j) is the execution probability for a single job in combination problem at a

time instant t. Since the summation of the probability should less or equal to 1 (Equation

5.6) at any time instant t, we set the exact execution probability as pi,t for each job.

The concrete methodology of a probability assignment is described in Algorithm 1.

Function Prob_Asn is called at the beginning of every time slice. It takes ready queue J

as the input, then outputs all active jobs’ probabilities, which is based on the roulette wheel

selection.
4Note that in any time instant t0, only one protected exists. The proof is provided on Subsection 5.2C.

39

Algorithm 1 Probability Assignment Rules
1: function Prob_Asn(Q, t0)
2: Proc = ∅
3: for each job τi, j ∈ J do
4: if τi, j is protected then
5: Proc[τi, j] = 1
6: for each job τk,l ∈ Q do
7: if τk,l , τi, j then
8: Proc[τk,l] = 0
9: end if
10: end for
11: break
12: end if
13: if τi, j is urgent then
14: Proc[τi, j] = ri,t/Bi,t
15: for each job τk,l ∈ lp(τi, j) do
16: Proc[τk,l] = 0
17: end for
18: break
19: end if
20: if τi, j is normal then
21: Proc[τi, j] = ri,t/Bi,t
22: end if
23: end for
24: for each job τi, j ∈ Q do
25: pi,t0 = Proc[τi, j]/

∑
τi, j∈Q Proc[τi, j]

26: end for
27: return p
28: end function

40

In Algorithm 1, lines 4-12 indicate that if τi, j is protected, then the Proc of other

jobs’ value are zero. Line 13-19 shows that if τi, j is urgent, the value of Proc of jobs in

hep(τi, j) and τi, j’s are defined by the ratio of the remaining workload and its budget, while

lp(τi, j)’s Proc value is zero. Line 20-22 means if τi, j is a normal job, then we use the

same equation to assign the Proc. In line 24-26, we apply the roulette wheel selection to

calculate the probabilities of jobs and return the probabilities. We illustrate the algorithm

by presenting the Example 5.2.3.

Example 5.2.3. A periodic task τ3 = (2, 12) is added to the task set shown in Table 5.1.

Online RWS generates an execution sequence 〈τ3,1, τ2,1, τ1,1, τ3,1〉 in the first four slices.

At the time instant 4, there are two jobs in the waiting queue, the parameters and the

remaining workload are shown in Table 5.4. According to Equation (5.14), the probability

ratio at time instant 4 is 1 : 1. Therefore, the probability assigned for each job should be

p1,4 = 50%; p2,4 = 50%. However, τ2,1 cannot be executed, even though it has 50% chance

of executing, because τ1,2 is in the urgent state and does not allow priority inversion. Thus,

in this scenario, when calculating the probability, we do not consider the τ2,1 as shown in

Figure 5.5. The new probabilities assigned to them are p1,2 = 100%; p2,1 = 0%.

Table 5.4. Probability distribution of a task set.

Job Remaining Workload (ri,t) Budget(Bi,t) Probability(Pr)
τ1,2 1 1 100%
τ2,1 1 1 100%

0 1 2 3 4 5 6 7 8 9 10 11 12

τ2,1

τ1,2

Online

τ1,2

Figure 5.5. The scenario for resizing the waiting queue when some tasks are going to miss
their deadlines. The rectangle denotes the waiting queue. Since τ1,2 or τ2,1 will miss its
deadline if τ3,1 executes, we do not allow τ3,1 to execute in this scheduling point.

41

As Example 5.2.3 shows, online RWS updates the Bi,t for each job τi, j at each

scheduling point, it considers allocating execution probabilities to the jobs that are in the

ready queue. Moreover, online RWS adjusts the probabilities within the waiting queue to

guarantee schedulability. We discuss the correctness of online RWS in the next subsection.

5.2.3. The correctness of the online RWS. In Subsection B, we discussed the

methodology of assigning the probability to jobs. We did not consider the correctness of

∆. An improper ∆ will make a feasible task set unschedulable. We discuss the constraints

of ∆ here.

Comparing to the selection of the frame size in the cyclic execution Baker and Shaw

(1989), the requirements of ∆ are as follows:

1. ∆ should divide some Ti (or ∆ should divide the hyper-period).

2. ∆ should divide all Ci.

3. Only one job can execute in ∆.

To simplify the calculation of schedule entropy, ∆ should divide the hyper-period.

The second and third requirements concern schedulability and entropy. When designing ∆,

jobs should finish execution at the boundary of ∆, or there would be some idle time inside

the ∆ within the busy period, which might delay the execution of some tasks and cause

these tasks to miss their deadline, as shown in Example 5.2.4.

Example 5.2.4. Given two tasks τ1 = (5, 3), τ2 = (6, 2) and ∆ = 2, a possible execution

sequence under online RWS is shown in Figure 5.6. τ1,2 misses its deadline at t = 10 under

the system settings. Because at time instant t = 6, τ2,2 and τ1,2 are normal jobs, online RWS

will randomly pick a job to execute according to their priorities. B1,6 cannot be updated

until the next scheduling point, and the execution of τ2,2 cannot be interrupted within ∆.

Hence, if the task does not finish its execution on the boundary of ∆, the task might miss its

deadline.

42

0 2 4 6 8 10

τ1 τ2

τ1,1 τ1,1 τ2,1 τ2,2 τ1,2

Figure 5.6. One possible execution sequence of the task set τ1 = (5, 3), τ2 = (6, 2) under
∆ = 2 online RWS.

Moreover, in online RWS, Bi, j(t) would be set as
⌊

Bi, j (t)
∆

⌋
∆.

Lemma 5.2.1. In online RWS, only one job can be protected at any time instant t0.

Proof. Assuming that a job τi, j is protected at the time instant t0 as shown in Figure 5.7, di, j

is the deadline of τi, j , i.e.,

di, j − t0 = ri,t0 . (5.15)

let

Di = Adb f (di, j) −
∑

k,l:dk,l≤di, j

Mk,l(t) − Ci . (5.16)

Then τi, j’s budget is

Bi, j(t0) = di, j − t0 − Di ≥ ri,t0 . (5.17)

From Equation (5.15) and Equation (5.17), we can get

Di = 0. (5.18)

t0 dh,q di,j dl,v
PROC

Figure 5.7. Demonstration of time instants in the proof for Lemma III.1.

We prove by contradiction. after considering two cases:

Case 1: At time instant t0, there exists another protected job τh,q with the deadline

dh,q, which has a higher priority than τi, j .

43

If τh,q with higher priority is protected at time instant t0, then rh,t0 > 0. Therefore

Di should be greater than zero in Equation (5.16). It contradicts Equation (5.18).

Hence, τh,q does not exist.

Case 2: At time instant t0, there exists another protected job τl,v with the deadline

dl,v which has a lower priority job than τi, j .

If τl,v is protected, then its remaining workload rl,t0 should be equal to its remaining

time dl,v − t0; its budget should satisfy:

Bl,v(t0) = dl,v − t0 − Dl ≥ rl,t0

Dl = 0.
(5.19)

However, τi, j has a higher priority than τl,v, which is protected at time t0, According to

Equation (5.16), Dl is greater than zero. It contradicts to Equation (5.19). So τl,v does not

exist.

Theorem 5.2.2. A task set is schedulable under Online RWS if and only if the following

condition (Equation (5.1)) holds:
n∑

i=1

Ci

Ti
≤ 1.

Proof. We prove the “if" part by contrapositive reasoning. If the utilization of a task set is

greater than 1, no scheduler can schedule such task set. The proof is completed by Liu and

Layland (1973b).

We prove the “only if" part by contrapositive, i.e., online RWS is not schedulable

=⇒ U > 1. Suppose τk,l misses its deadline at dk as shown in Figure 5.8. tr is τk,l’s

release time. t−1 is the last idle instant5. tx is the first time instant where Bk,tx < rk,tx , which

indicates that the job τk,l would miss its deadline under online RWS.

5The idle instant is that each task whose next job has a deadline at or before dk either has no ready job or
has just release a job before tr , and no job with a deadline after dk executes in (t−1, dk).

44

t-1 tr tX dk

Figure 5.8. Timeline set up for proof of Theorem III.2.

If tx > tr and Equation (5.16):

Bk,l(tx) = dk − tx − Dk < rk,tx (5.20)

Since tx is the first time instant that Bk,tx < rk,tx , the release time tr which is before

time tx must satisfy:

Bk,l(tr) = dk − tr − Dk ≥ rk,tr (5.21)

Then, we consider three cases at tr :

Case 1: hep(τi, j) jobs is chosen to run in the next slot.

B′ = dk − (tr + ∆) − (Dk − ∆) = Bk,l(tr) ≥ rk,tr (5.22)

Case 2: τk,l is chosen to run in the next slot.

B′′ = dk − (tr + ∆) − Dk = Bk,l(tr) − ∆ ≥ rk,tr − ∆ (5.23)

Case 3: A lower-priority job is chosen to run in the next slot.

B′′′ = dk − (tr + ∆) − Dk ≥ rk,tr+∆ = rk,tr (5.24)

45

No matter which case is chosen by RWS, if Bk,l(tr) ≥ rk,tr holds at time tr , it will

always holds when τk,l is in the ready queue. Therefore, tr should be the first time instant

that Bk,l(tr) < rk,tx , where

tx = tr ;

Bk,l(tr) < Ci

(5.25)

There is no priority inversion during (tr, dk]. Additionally, since RWS is a work-

conserving scheduling algorithm, the idle and busy period in RWS is the same as the one in

the EDF scheduling algorithm.

Let t−1 be the last idle instant, from t−1 to tr , there is no job in lp(τk,l) executing.

Otherwise

∀τi,q ∈ hep(τk,l), Bi,q(t0) > rk,t0 (5.26)

Which indicates that idle slots exist after time instant t−1 if no job in lp(τk,l) executed. It

contradicts with the concept of busy period. Hence, no priority inversion is allowed in time

period (t−1, dk]; only hep(τk,l) jobs can be executed in this period.

Thus, the processor demand in (t−1, dk] must have exceeded the supply, i.e.,

N∑
j=1
b

dk − t−1

Tj
c · Cj > dk − t−1 (5.27)

⇒

N∑
j=1

dk − t−1

Tj
· Cj > dk − t−1

cancelling dk − t−1 on both sides gives us
∑n

j=1 Ci/Ti > 1, which violates Equation (5.1).

46

5.2.4. Empty task. Online RWS is a work-conserving scheduling algorithm, which

only improves the randomness in the busy period. For the idle period, the execution

probabilities of jobs are 0, so the slot entropy is 0. In order to increase the randomness

of the execution sequence under online RWS and distribute the task more evenly in one

hyper-period, the idle period would be viewed as an empty task τemp, and its parameters

(Temp,Cemp) are calculated by:

Cemp ≤ L × (1 −U);

T = L
(5.28)

We should guarantee the schedulability after adding the empty task. According to

Theorem 5.2.1, the total utilization of the new task set should less than 1. Therefore, Cemp

should follow Equation (5.28). Besides, this empty task has the lowest priority; so, it cannot

preempt a task in a protected or a urgent state. We provide an example below.

Example 5.2.5. We continue to consider the task set in Example 5.1.1 and add an empty

task τemp = (2, 6) to it. The possibility assignment with the empty task (PROC_R) for the

first six slots is listed at Table 5.5 while the one without the empty task (PROC) is between

the parentheses. Thus, according to Equation (5.4), in the first hyper-period, the schedule

entropy with the empty task Hemp(t,S) in Table 5.5 is 5.53 while the one without empty

task is 0.97. However, the maximum schedule entropy is log2 54 ≈ 5.7 with Equation (5.9).

Though we add a empty task to the taskset, we design online RWS with the greedy strategy,

the schedule entropy of online RWS will still fall into a local optima. In future work, we

will address this issue and optimize the probability assignment rules so that the schedule

entropy will be closer to the maximum value.

47

Table 5.5. PROC_R Slot entropy of a task set.

Task s1 s2 s3 s4 s5 s6
τ1 2/7(2/5) 15/37(0) 1(0) 1/3(1) 1/2(0) 0(0)
τ2 3/7(3/5) 10/37(1) 0(1) 0(0) 0(0) 0(0)
τemp 2/7 12/37 0 2/3 1/2 1

Hemp(t,S) 1.56 2.06 0 0.91 1 0
H(t, S) 0.97 0 0 0 0 0

5.3. EVALUATION

In this section, we first introduce the evaluation setup, then we show the scheduling

entropy in different settings, and conclude with an analysis of the experiment results.

5.3.1. Evaluation Setup. To evaluate the schedule entropy under varying settings,

we randomly generated the task set as follows:

• The number of tasks n are chosen from {5, 7, 9, 11, 13, 15}.

• The utilization U of the task set is {0.5, 0.55, 0.6, ..., 0.9}.

• The task’s utilization is generated by UUnifastDiscard Emberson et al. (2010).

• The task’s period and WCET are integers.

• The task’s period is 2i, where i ∈ [8, 12].

• For each pair of (U, n), we generate 20 different task sets.

• To ensure the schedulability, we set ∆ = 1.

Under our settings, we have 1200 random task sets which are in 60 groups to evaluate

the scheduling entropy.

5.3.2. Results. We set the task released without jitter, and implemented online

RWS and Yoon et al.’s TaskShuffler Yoon et al. (2016) which is the base case shown in

Figure 5.12. Online RWS experiment results are shown in Figure 5.9-5.11 for the different

48

number of tasks, where the x-axis is the utilization and y-axis is the schedule entropy. In

online RWS, the average schedule entropy increases with the increase of the task’s number,

Moreover, online RWS performs well when the workload is heavy, the average value of

schedule entropy may large than the schedule entropy with small utilization.

We compare our experimental result with the base case in Figure 5.13. The x-axis

is the utilization, while the y-axis is the ratio of the value of the schedule entropy between

online RWS and the base case where we combined the group by the utilization. As Figure

5.13 shows that our work has better randomness than Yoon et al.’s. The average ratio is

527 and the best one is 3606. Additionally, when the utilization increases, our scheduling

entropy increases while TaskShuffler’s decreases. There are three main reasons:

1. The inversion budget. When they calculate the inversion budget Vi 6, they use the

worst-case maximum inversion budget which is pessimistic, especially for lower-

priority tasks. Thus, when TaskShuffler selects the candidate job set, it will miss

some lower-priority tasks. On the contrary, for our online RWS, we consider a

precise semi-inversion budget so that no potential candidate job will be missed when

conducting the selection.

2. The probability assignment. In TaskShuffler, they assign equal probabilities to

the candidate jobs so as to gain the maximum scheduling entropy. But during the

experiment, we find that assigning equal probabilities to candidate jobs will cause an

unnecessary pessimism, which shrinks the candidate job set in the later scheduling

slot. Hence, whenwe design onlineRWS,we avoid the side-effect brought by previous

slots through assigning the probabilities unevenly.

3. The scheduling point. The scheduling entropy depends on the probability assignment

and the number of scheduling points. In the TaskShuffler, the scheduling point is

decided by the inversion budget. Thus, if a task utilization is small, i.e., Vi can

6Vi = di − (ei +
∑
τj ∈hp(τi)(d

di
Tj
e + 1)ej), where hp(τi) is the tasks with higher priority than τi under fixed

priority.

49

be large, and the length of the time slot, which is decided by Vi, might be long.

Considering a hyper-period, if the system has only few scheduling points, even with

the perfect probability assignment, the scheduling entropy cannot be high.

Figure 5.9. Task sets with task number n=5 are scheduled under RWS, the average value of
schedule entropies are large than 10000.

Figure 5.10. Task sets with task number n=9 are scheduled under RWS, the average value
of schedule entropies are large than 40000.

50

Figure 5.11. Task sets with task number n=15 are scheduled under RWS, the average value
of schedule entropies are larger than 70000.

0

50

100

150

200

250

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Sc
h

ed
u

le
 E

n
tr

o
p

y

Utilizations

Base Case Results

n=5 n=7 n=9 n=11 n=13 n=15

Figure 5.12. The schedule entropy for randomly generated task sets scheduled under
TaskShufflerYoon et al. (2016). Each group represents the schedule entropy for the different
number of tasks with same utilization.

51

Figure 5.13. Ratio results of RWS and TaskShufflerYoon et al. (2016) for the randomly
generated task set with different utilization. RWS outperforms TaskShuffler by about 500
times on average under all settings.

52

6. CONCLUSION

This thesis mainly focuses on two cache problems in real-time systems: CRPD

and cache information leakage. For the CRPD part, we first integrate the CRPD into

GEDF schedulability test and present different methods to bound the CRPD under GEDF.

Specifically, the condensed multiset approach leverages the ECB-union multiset approach

and UCB-union multiset approach so as to provide a tighter upper bound for the CRPD.

Both theoretical analysis and the simulation of results demonstrate the performance of the

proposed method1.

As the predictability of a real-time system potentially leads to scheduling infor-

mation leakage, which can be utilized by attackers to launch a successful cache attack,

we propose the offline and online RWS randomized scheduling algorithms that guarantee

schedulability. By assigning probability to each job at every scheduling point, the RWS

scheduling algorithm breaks the execution pattern and increases the randomness of the exe-

cution sequence. This can be adapted to different devices and systems. Scheduling entropy

is applied to measure randomness. According to our evaluation, online RWS can handle

various utilization workload settings2.

Future Direction: For integrating CRPD into GEDF, we first aim to give a more

precise method to calculate the total number of preemptions so that we canobtain a tighter

bound of CRPD in schedulability analysis. Second, offer a more general approach that

could be applied into different cache models to bound the CRPD.

1This work was published on ICESS 2017 (Proceedings of the 14th IEEE International Conference On
Embedded Software and Systems) Zhang et al. (2017)

2This work was published on RTAS 2018 (Proceedings of the 24th IEEE Real-Time and Embedded
Technology and Applications Symposium) Zhang et al. (2018)

53

For the RWS, we will optimize the probability assignment rules that can predict

and minimize side-effects that are caused by the current decision. Moreover, we plan to

improve the flexibility of online RWS through relaxing the limitations of a fixed and small

segment length (∆) and take context switch delay Lunniss et al. (2013); Zhang et al. (2017)

into consideration.

54

REFERENCES

Abdi, F., Hasan, M., Mohan, S., Agarwal, D., and Caccamo, M., ‘Resecure: A restart-based
security protocol for tightly actuated hard real-time systems,’ 2016.

Altmeyer, S., Davis, R. I., and Maiza, C., ‘Cache related pre-emption delay aware response
time analysis for fixed priority pre-emptive systems,’ in ‘IEEE 32nd Real-Time
Systems Symposium (RTSS),’ IEEE, 2011 pp. 261–271.

Altmeyer, S., Davis, R. I., and Maiza, C., ‘Improved cache related pre-emption delay aware
response time analysis for fixed priority pre-emptive systems,’ Real-Time Systems,
2012, 48(5), pp. 499–526.

Baker, T. P., ‘Multiprocessor EDF and deadlinemonotonic schedulability analysis,’ in ‘IEEE
24th Real-Time Systems Symposium (RTSS),’ IEEE, 2003 pp. 120–129.

Baker, T. P., ‘An analysis of EDF schedulability on a multiprocessor,’ IEEE transactions on
parallel and distributed systems, 2005, 16(8), pp. 760–768.

Baker, T. P. and Shaw, A., ‘The cyclic executive model and ada,’ Real-Time Systems, 1989,
1(1), pp. 7–25.

Baruah, S., ‘Techniques for multiprocessor global schedulability analysis,’ in ‘IEEE 28th
International Real-Time Systems Symposium (RTSS),’ IEEE, 2007 pp. 119–128.

Baruah, S. K., Mok, A. K., and Rosier, L. E., ‘Preemptively scheduling hard-real-time
sporadic tasks on one processor,’ in ‘Real-Time Systems Symposium,’ IEEE, 1990
pp. 182–190.

Bauer, A., Jaulmes, E., Lomné, V., Prouff, E., and Roche, T., ‘Side-channel attack against rsa
key generation algorithms,’ in ‘International Workshop on Cryptographic Hardware
and Embedded Systems,’ Springer, 2014 pp. 223–241.

Bertogna, M. and Cirinei, M., ‘Response-time analysis for globally scheduled symmetric
multiprocessor platforms,’ in ‘IEEE 28th International Real-Time Systems Sympo-
sium (RTSS),’ IEEE, 2007 pp. 149–160.

Bini, E. and Buttazzo, G. C., ‘Measuring the performance of schedulability tests,’ Real-Time
Systems, 2005, 30(1), pp. 129–154.

Brucker, P., ‘Multiprocessor tasks,’ in ‘Scheduling Algorithms,’ pp. 298–320, 1998.

Buttazzo, G., Hard real-time computing systems: predictable scheduling algorithms and
applications, volume 24, 2011.

55

Chen, C.-Y., Ghassami, A., Nagy, S., Yoon, M.-K., Mohan, S., Kiyavash, N., Bobba, R. B.,
and Pellizzoni, R., ‘Schedule-based side-channel attack in fixed-priority real-time
systems,’ Technical report, 2015.

Davis, R. I. and Burns, A., ‘Resource sharing in hierarchical fixed priority pre-emptive
systems,’ in ‘RIEEE International real-Time Systems Symposium (RTSS),’ IEEE,
2006 pp. 257–270.

Emberson, P., Stafford, R., and Davis, R. I., ‘Techniques for the synthesis of multipro-
cessor tasksets,’ in ‘proceedings 1st International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS 2010),’ 2010 pp.
6–11.

Ferdinand, C. andWilhelm, R., ‘Efficient and precise cache behavior prediction for real-time
systems,’ Real-Time Systems, 1999, 17(2-3), pp. 131–181.

Goossens, J., Funk, S., and Baruah, S., ‘Priority-driven scheduling of periodic task systems
on multiprocessors,’ Real-time systems, 2003, 25(2), pp. 187–205.

Gruss, D., Maurice, C., Wagner, K., and Mangard, S., ‘Flush+flush: A fast and stealthy
cache attack,’ in ‘Proceedings of the 13th International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment - Volume 9721,’ Springer-
Verlag, ISBN 978-3-319-40666-4, 2016 pp. 279–299.

Gujarati, A., Nasri, M., and Brandenburg, B. B., ‘Lower-bounding the mttf for systems with
(m, k) constraints and iid iteration failure probabilities,’ 2017.

Gülmezoğlu, B., Inci, M. S., Irazoqui, G., Eisenbarth, T., and Sunar, B., ‘A faster and more
realistic flush+ reload attack on aes,’ in ‘International Workshop on Constructive
Side-Channel Analysis and Secure Design,’ Springer, 2015 pp. 111–126.

Ju, L., Chakraborty, S., and Roychoudhury, A., ‘Accounting for cache-related preemption
delay in dynamic priority schedulability analysis,’ in ‘Design, Automation & Test
in Europe Conference & Exhibition,’ IEEE, 2007 pp. 1–6.

Kim, H., De Niz, D., Andersson, B., Klein, M., Mutlu, O., and Rajkumar, R., ‘Bounding
memory interference delay in cots-based multi-core systems,’ in ‘IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS),’ IEEE, 2014 pp.
145–154.

Lee, C.-G., Hahn, H., Seo, Y.-M., Min, S. L., Ha, R., Hong, S., Park, C. Y., Lee, M., and
Kim, C. S., ‘Analysis of cache-related preemption delay in fixed-priority preemptive
scheduling,’ IEEE transactions on computers, 1998, 47(6), pp. 700–713.

Lee, E. A., ‘Cyber physical systems: Design challenges,’ in ‘IEEE 11th International
Symposium onObject Oriented Real-TimeDistributed Computing (ISORC),’ IEEE,
2008 pp. 363–369.

56

Lipp, M., Gruss, D., Spreitzer, R., Maurice, C., and Mangard, S., ‘Armageddon: Cache at-
tacks onmobile devices,’ in ‘25th USENIX Security Symposium (USENIX Security
16),’ USENIX Association, ISBN 978-1-931971-32-4, 2016 pp. 549–564.

Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Mangard, S., Kocher, P., Genkin,
D., Yarom, Y., and Hamburg, M., ‘Meltdown,’ ArXiv e-prints, 2018.

Liptay, J. S., ‘Structural aspects of the system/360 model 85, ii: The cache,’ IBM Systems
Journal, 1968, 7(1), pp. 15–21.

Liu, C. L. and Layland, J. W., ‘Scheduling algorithms for multiprogramming in a hard-real-
time environment,’ Journal of the ACM (JACM), 1973a, 20(1), pp. 46–61.

Liu, C. L. and Layland, J. W., ‘Scheduling algorithms for multiprogramming in a hard-real-
time environment,’ Journal of the ACM (JACM), 1973b, 20(1), pp. 46–61.

Liu, F., Yarom, Y., Ge, Q., Heiser, G., and Lee, R. B., ‘Last-level cache side-channel
attacks are practical,’ in ‘IEEE Symposium on Security and Privacy (SP),’ 2015 pp.
605–622.

Lunniss, W., Altmeyer, S., Maiza, C., and Davis, R. I., ‘Integrating cache related pre-
emption delay analysis into edf scheduling,’ in ‘IEEE 19th Real-Time and Embedded
Technology and Applications Symposium (RTAS),’ IEEE, 2013 pp. 75–84.

Mohan, S., Yoon, M. K., Pellizzoni, R., and Bobba, R., ‘Real-time systems security through
scheduler constraints,’ in ‘Proceeding of the 26th Euromicro Conference on Real-
Time Systems (ECRTS)„’ IEEE, 2014 pp. 129–140.

Negi, H. S., Mitra, T., and Roychoudhury, A., ‘Accurate estimation of cache-related pre-
emption delay,’ in ‘Proceedings of the 1st IEEE/ACM/IFIP international conference
on Hardware/software codesign and system synthesis (ICHCSS),’ ACM, 2003 pp.
201–206.

Neumann, P. G., ‘Denial-of-service attacks,’ Communications of the ACM, 2000, 43(4),
pp. 136–136.

Omara, F. A. and Arafa, M.M., ‘Genetic algorithms for task scheduling problem,’ J. Parallel
Distrib. Comput., 2010, 70(1), pp. 13–22, ISSN 0743-7315.

Pellizzoni, R. and Caccamo, M., ‘Toward the predictable integration of real-time cots
based systems,’ in ‘Real-Time Systems Symposium, 2007. RTSS 2007. 28th IEEE
International,’ IEEE, 2007 pp. 73–82.

Pellizzoni, R., Paryab, N., Yoon,M.-K., Bak, S.,Mohan, S., andBobba, R.B., ‘Ageneralized
model for preventing information leakage in hard real-time systems,’ in ‘Real-Time
and Embedded Technology and Applications Symposium (RTAS), 2015 IEEE,’
IEEE, 2015 pp. 271–282.

57

Prete, A., Xhani, O., Buttazzo, G., and Bertogna, M., ‘Effects of real-time scheduling on
cache performance and worst case execution times,’ ????

Puaut, I., Arnaud, A., and Decotigny, D., ‘Performance analysis of static cache locking in
multitasking hard real-time systems,’ Publication interne- IRISA, 2003.

Rivest, R. L., Shamir, A., and Adleman, L., ‘A method for obtaining digital signatures and
public-key cryptosystems,’ Communications of the ACM, 1978, 21(2), pp. 120–126.

Sampigethaya, K., Poovendran, R., and Bushnell, L., ‘Secure operation, control, and main-
tenance of future e-enabled airplanes,’ Proceedings of the IEEE, 2008, 96(12), pp.
1992–2007, ISSN 0018-9219, doi:10.1109/JPROC.2008.2006123.

Sebek, F., ‘Measuring cache related pre-emption delay on a multiprocessor real-time sys-
tem,’ Memory, 2001, 1024, p. 66MHz.

Shannon, C. E., ‘A mathematical theory of communication,’ Bell system technical journal,
1948, 27(3), pp. 379–423.

Shaout, A. andMcGirr, K., ‘Real-time systems in automotive applications: Vehicle stability
control,’ Electrical Engineering Research, 2013, 1(4), pp. 83–95.

Son, J. et al., ‘Covert timing channel analysis of rate monotonic real-time scheduling
algorithm inmls systems,’ in ‘Information AssuranceWorkshop, 2006 IEEE,’ IEEE,
2006 pp. 361–368.

Stankovic, J. A. and Ramamritham, K., ‘What is predictability for real-time systems?’
Real-Time Systems, 1990, 2(4), pp. 247–254.

Staschulat, J., Schliecker, S., and Ernst, R., ‘Scheduling analysis of real-time systems with
precise modeling of cache related preemption delay,’ in ‘Euromicro 17th Conference
on Real-Time Systems (ECRTS),’ IEEE, 2005 pp. 41–48.

Sun, Y. and Lipari, G., ‘Response time analysis with limited carry-in for global earliest
deadline first scheduling,’ in ‘IEEE Real-Time Systems Symposium (RTSS),’ IEEE,
2015 pp. 130–140.

Tao, F., LaiLi, Y., Xu, L., and Zhang, L., ‘Fc-paco-rm: A parallel method for service
composition optimal-selection in cloud manufacturing system,’ IEEE Transactions
on Industrial Informatics, 2013, 9(4), pp. 2023–2033, ISSN 1551-3203.

Yarom, Y. and Falkner, K., ‘Flush+reload: A high resolution, low noise, l3 cache side-
channel attack,’ in ‘23rd USENIX Security Symposium (USENIX Security 14),’
USENIX Association, ISBN 978-1-931971-15-7, 2014 pp. 719–732.

Yoon, M. K., Mohan, S., Chen, C. Y., and Sha, L., ‘Taskshuffler: A schedule randomization
protocol for obfuscation against timing inference attacks in real-time systems,’ in
‘2016 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS),’ 2016 pp. 1–12, doi:10.1109/RTAS.2016.7461362.

58

Zhang, Y., Guo, Z., Wang, L., Xiong, H., and Zhang, Z., ‘Integrating cache-related pre-
emption delay into gedf analysis for multiprocessor scheduling with on-chip cache,’
in ‘Trustcom/BigDataSE/ICESS, 2017 IEEE,’ IEEE, 2017 pp. 815–822.

Zhang, Y., Wang, L., Jiang, W., and Guo, Z., ‘Work-in-progress: Rws-a roulette wheel
scheduler for preventing execution pattern leakage,’ in ‘2018 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS),’ IEEE, 2018 pp. 93–
96.

59

VITA

The author, Ying Zhang, was born in China. She developed a passion for technology

early in life and received her bachelors degree in software engneerning from China, in May

2016. After her bachelor’s she enrolled in Missouri University of Science and Technology

for graduate studies. During her time at Missouri S&T, the author worked as a Graduate

Research Assistant under Dr. Zhishan Guo and Dr. George Markowsky, from August 2016

to December 2018.

In partial fulfillment of the requirements for the Master of Science in Computer

Science degree from Missouri University of Science and Technology, this thesis is the

culmination of that degree. The author obtained her Master of Science in Computer

Science from Missouri University of Science and Technology in December 2018.

	Improved CRPD analysis and a secure scheduler against information leakage in real-time systems
	Recommended Citation

	tmp.1549290608.pdf.403f1

