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ABSTRACT

The increasing scale and complexity of power grids exacerbate concerns about

failure propagation. A single contingency, such as outage of a transmission line due

to overload or weather-related damage, can cause cascading failures that manifest as

blackouts. One objective of smart grids is to reduce the likelihood of cascading failure

through the use of power electronics devices that can prevent, isolate, and mitigate

the effects of faults. Given that these devices are themselves prone to failure, we

seek to quantify the effects of their use on dependability attributes of smart grid.

This thesis articulates analytical methods for analyzing two dependability attributes

- reliability and survivability - and proposes a recovery strategy that limits service

degradation. Reliability captures the probability of system-level failure; Survivability

describes degraded operation in the presence of a fault. System condition and service

capacity are selected as measures of degradation. Both reliability and survivability are

evaluated usingN−1 contingency analysis. Importance analysis is used to determine a

recovery strategy that maintains the highest survivability in the course of the recovery

process. The proposed methods are illustrated by application to the IEEE 9-bus

test system, a simple model system that allows for clear articulation of the process.

Simulation is used to capture the effect of faults in both physical components of the

power grid and the cyber infrastructure that differentiates it as a smart grid.
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1 INTRODUCTION

Around the globe, power grids supply electricity to billions of consumers, often

with a down time limited to a few minutes per year [1,2]. Since the social structures in

most developed countries rely on continuous supply of electricity, massive disorders

can happen when the power grid is unable to deliver electricity to consumers; all

the joints of our life are completely paralyzed without electricity. For instance, vital

services such as computer systems, transportation systems, and communications are

quickly halted [3].

In August of 2011, the outage of an electrical line near San Diego led to a

cascading failure and caused a blackout that affected more than 3 million people.

The cause was disconnection of a major transmission line by overgrown trees [4]. The

resulting shift of load to adjacent transmission lines caused an overload that cascaded

through the grid. In a similar scenario, a cascading failure in Ohio kept millions of

consumers without electricity for 15 hours [5]. Analysis of recent blackouts shows

that their causes are largely similar. One segment of the system fails, the segments

near it cannot cope with the increased load caused by the failure, so they fail. The

resulting outages cascade through the grid and leave large areas without power.

It is impossible to replace even small portions of the power grid infrastructure

each time an outage occurs, as doing so would necessitate expending significant time

and effort which is prohibitively expensive. Practical and innovative solutions are

required that allow the grid to tolerate localized outages without collapse. One such

solution is to integrate cyber infrastructure (encompassing communication, comput-

ing, and control elements) that enables the intelligence required of a smart grid. The

goal is to create a fortified and efficient power grid that outperforms its predeces-

sors. However, failure is inevitable even in the most advanced cyber infrastructure,
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and as such, evaluating, modeling, and predicting the reliability and survivability of

smart grids are critical steps towards their broader use. Equally critical is creating

decision support systems that guide recovery from failure in a fashion that maintains

acceptable service levels.

This thesis presents methods for evaluation and analysis of system-level reli-

ability and survivability for power grids, including smart grids. Also proposed are

methods for determining the best strategy for recovery from outages. The proposed

approach is illustrated through its application to the IEEE 9-bus test system and

a smart grid created by fortifying this grid with power electronics devices capable

of mitigating and isolating the effects of a line outage. Simulation of these grids

with Power System Analysis Toolbox (PSAT) [6] and subsequent N − 1 contingency

analysis were used to instantiate the models.

The first contribution of this thesis is to quantify the reliability of the IEEE

9-bus grid based on data from N − 1 contingency analysis. We also investigate the

gains in reliability achieved by the addition of intelligent control devices to the sys-

tem. Despite the importance of reliability as an indicator of dependability, it falls

short in capturing degraded operation, and makes a binary prediction of the prob-

ability that the system will be operational. Survivability, which captures the effect

of failure on the ability of a system to deliver the expected functionality, is better-

suited to analysis of power grids, which are capable of providing degraded service

despite the losses incurred as a result of component or subsystem failure. The second

contribution of this thesis is introducing a survivability index that quantifies the degra-

dation experienced. This index, which considers both the extent of component failure

and the loss in service capacity, can be used to guide recovery efforts and provides

a quantitative measure that can be used to compare the effectiveness of competing

recovery strategies. The third contribution of this research is to employ the proposed
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survivability metric in making decisions for the recovery process. Figure 1.1 depicts

the overarching goals of our research.

Cyber

Physical

Interdependency

Su
rv

iv
a

bi
lit

y

Time

What fraction of its services 
can does the system provide 

after failure?

Service 
capacity

System 
condition

Survivability 
Index

How can we return to 
normal operation after 

failure?

How likely is the system to be operational at 
a given time? How can this likelihood be 
increased by using cyber infrastructure?

Recovery

Time

Line Importance

Amount of Power

Figure 1.1. High-level abstraction of research objectives

The remainder of this thesis is organized as follows. Section 2 presents related

literature on the analyses of reliability and survivability of power grids. In Section

3, we propose respective approaches for analysis of reliability and survivability, and

explain how the proposed approach can provide information to guide recovery efforts.

Section 4 presents a detailed case study on the IEEE 9-bus system and illustrates

application of the proposed approach. Finally, Section 5 concludes this thesis and

outlines future extensions to the research.
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2 BACKGROUND AND RELATED WORK

Given the dependence of almost any other system on continuous supply of

electricity, the power grid can be considered the most important of all critical infras-

tructures [7]. Smart grids, which are large-scale networked cyber-physical systems,

have been introduced to the energy sector as part of efforts to increase the relia-

bility, energy, and sustainability of the generation, distribution, and transmission of

power. Regardless of their level of support from cyber infrastructure, power grids

are comprised of numerous interconnected components whose operation (or failure)

is dependent upon each other. Section 1 described two events where this interdepen-

dence led to large-scale and lengthy blackouts. These blackouts are the end result of

cascading failure, which is defined as “the usual mechanism by which failures propa-

gate to cause large blackouts of electric power transmission systems [8].” Refs. [9–11]

present detailed investigations of cascading failures.

A notable study on the topic of cascading failures is presented in Ref. [9],

where the authors investigate the impact of using local power sources by developing

a simulation model to prove that local power sources can reduce the probability of

cascading failure. A related study is presented in Ref. [10], where a model is proposed

for vulnerability of a power grid to sequences of cascading events. The “vulnerability”

term is defined in the context of cascading events and goes beyond the traditional

concept of N − 1 or N − 2 system contingency. Component-level failures investigated

in this study include outages of transmission lines and generators. In a relatively

different study presented in [11], the authors studied the impacts of the topology

of power grids on failure propagation by developing a DC power flow model. The

conclusion reached was that reduced connectivity can improve performance.
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While security attacks and accidental failures of transmission lines, generators,

or transformers are examples of root causes for cascading failures, another potential

cause is power grid congestion. A grid is considered congested when the existing

transmission lines become incapable of accommodating the entire load demand dur-

ing periods of emergency load conditions. One method of reducing transmission

congestion is to balance the power flow using power electronics devices such as Flex-

ible AC Transmission Systems (FACTS), which can enable increased utilization of

the existing power grid infrastructure [12]. The success of these devices in directing

the power flow to prevent and/or mitigate the effects of cascading failures has been

demonstrated in many studies, including [13–15]. The topics discussed in these stud-

ies include optimal placement and configuration of FACTS devices, with the goal of

achieving minimum total congestion.

Prediction of the effects of cascading failures can be accomplished through

modeling of dependability attributes of a system. The specific dependability at-

tributes to be chosen depend on the type of service a system provides and expected

behavior of the system in face of disturbances. One such attribute is reliability, which

is defined as the probability of failure-free operation of a system over a given dura-

tion of time, under given conditions [16]. Reliability has been extensively studied for

power grid systems and modeled both qualitatively [17] and quantitatively [18, 19].

The authors of [17] have carried out analysis of the impact of demand response on the

reliability of distribution systems. In this study, reliability evaluation of the power

system is based on the static balance between load and generation (and existence

of system facilities to meet the demand). Both analytical and simulation-based ap-

proaches for evaluating the reliability indices of distribution systems are presented

in [18]. A graph-theoretical model is proposed in Ref. [19], where the goal is impor-

tance analysis.
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The reliability model used in this thesis is based on the Markov Chain Imbed-

dable Structure (MIS), which provides a framework for quantitative reliability mod-

eling of complex systems [20]. This technique is well-suited to analysis of an existing

network with a known topology, in contrast to methods utilizing random networks,

which are beneficial mostly in the design stage. A distinguishing factor of the work

in this thesis is that the failure of both cyber and physical components of the smart

grid are considered in evaluating dependability and guiding recovery efforts.

As an attribute of dependability, reliability takes a binary view of operation

of a system, i.e., degraded operation, where partial functionality has been retained

is considered equivalent to catastrophic failure. In contrast to availability analysis,

which captures both failure and recovery, reliability analysis terminates upon failure

of a system. This perspective falls short for modern critical infrastructures, which

are expected to autonomously withstand attacks, remedy the consequences of failure,

and recover in a timely manner. Survivability, defined as “the ability of a system

to continue to function during and after a disturbance,” is more appropriate for a

system that is expected to be resilient [21].

A representative qualitative study on survivability is [22], which presents a

systematic approach for determining common and complementary characteristics of

survivability. The approach includes definition, attributes, and evaluation measures

for survivability.

The survivability of power grids is the topic of [23–26]. In [23], the authors

propose a survivability index based on the combination of voltage support, voltage

stability, and reliability of the system. The System Average Interruption Duration

Index (SAIDI) - a metric commonly used to assess the consequence of failure - is

extended to analysis of smart grids in [24]. This study is extended in [25] to propose

an analytical model for survivability of a power grid, through initial state conditioning,

state space factorization, and state aggregation. Another extension to [24] is presented
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in [26], where survivability is assessed in terms of available power for each customer

up to a specific time. This is in contrast to [26], which considers the total available

power.

More specifically, in [25] the survivability index, denoted as mj(t), is deter-

mined based on Equation (2.1):

mj(t) = NjE (2.1)

In Equation (2.1), Nj is the number of customers affected by a failure at section

j, and E is energy demanded per user per unit time.

In contrast, the survivability index proposed in [26] is calculated as in Equation

(2.2), where V is the survivability metric, Pn is the amount of available power after

failure, Po is the amount of available power before failure, Ln is the amount of power

consumption by loads after failure, and Lo is the amount of power consumption by

loads before failure.

V =
Pn

Ln

Po

Lo

=
Pn

Ln

Lo

Po

(2.2)

One distinction of the survivability analysis proposed in this thesis from re-

lated studies is that we consider the system condition - the fraction of components

that remain functional after failure - and the available power at the time of failure.

Deteriorated system condition is conducive to cascading failure, and as such, the pro-

posed metric is a more comprehensive predictor of survivability. A second distinction

is that our work considers the fully-functional state of the system as the initial state

for survivability analysis, in contrast to [25], where the state at the time of failure is

considered the initial state. Beginning analysis from a fully-functional state facilitates

linkage of reliability and survivability models, and more accurately reflects the extent

of degradation that results from a failure or sequence of failures.
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A more fundamental distinction is that our proposed analysis considers con-

tingencies where the root cause is a fault in the cyber infrastructure. Despite the

considerable research activity related to smart grids, dependability analysis of these

systems is primarily focused on the effects of contingencies resulting from a fault in

a physical component such as a transmission line.

In addition to reliability and survivability analysis, this thesis presents a

method for guiding recovery efforts. Related studies include [25], where the strat-

egy proposed is to reduce load demand on a failing system by providing sufficient

backup power to temporarily meet demand. This increases the probability that the

system will continue to function in spite of failure. In [26,27], the strategy is to first

recover the transmission line that supplies the greatest amount of power, then the

line that supplies the second greatest amount of power, and so on. Both [26] and [27]

neglect the duration of time associated with recovery of each line, which can affect the

net service level achieved during the recovery process. The recovery method proposed

in this thesis addresses this shortcoming by considering the rate of power recovery in

determining the sequence of restoration efforts.

Figure 2.1 summarizes the literature cited in this section, and depicts the main

categories of related work.
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Figure 2.1. Representative studies from related literature
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3 METHODOLOGY

This section discusses reliability and survivability modeling of a cyber-physical

power grid, as well as a strategy for guiding fault recovery decisions. Reliability rep-

resents the system in a binary way; either functional or failed. Survivability captures

the extent of system degradation and determines the retained system functionality.

The proposed recovery strategy aims to achieve the highest potential survivability

throughout the course of the recovery process, until the initial level of operational

ability is restored - assuming that such restoration is possible.

3.1 RELIABILITY MODELING

Critical infrastructure systems such as the power grid are expected to be ex-

tremely reliable - a challenging feat, considering the complexity, scale, and intercon-

nectedness of these systems [28]. Objective estimation, assessment, and prediction

of the reliability of these systems is similarly challenging. Any meaningful represen-

tation of reliability should reflect both the state of components and the operational

condition of the system. The MIS technique [20], which determines system-level re-

liability based on the state (functional or failed) of its constituent components, is

well-suited to achieving this goal. This technique is comprised of four elements: ma-

trix representation of system states, classification of each state as functional or failed,

vector representation of the probability distribution for the initial system state, and

matrix representation of state transition probabilities.

We illustrate the MIS technique through its application to a very simple test

system: the IEEE 9-bus grid. This system has three generators, nine transmission

lines, and three loads, as depicted in Figure 3.1. Among these components, outage

of transmission lines is the event with by far the greatest impact on reliability. For
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tractability, we focus on outage of transmission lines as representative of component-

level failure in physical components of the grid. Each of the nine transmission lines

can experience an outage, leading to a total of 29 = 512 system states. Table 3.1

represents these states as a binary matrix. Each row of the table represents one of

the 512 states. Each column represents the state of one transmission line. A ‘1’

denotes that the transmission line is functional; a ‘0’ denotes that it has experienced

an outage.

WSCC 3-machine, 9-bus system (Copyright 1977)

Line9

Line8Line7

Line6Line5

Line4 Line3

Line2 Line1

Bus 9

Bus 8

Bus 7

Bus 6Bus 5

Bus 4

Bus 3Bus 2

Bus 1

Generator

Load

Transmission line

Bus

163 MW 85 MW

72 MW

125 MW 90 MW

100 MW

Figure 3.1. Sample test system: the IEEE 9-bus grid

.
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Table 3.1. Matrix representation of system states for the IEEE 9-bus system

Transmission Lines

States TL1 TL2 TL3 TL4 TL5 TL6 TL7 TL8 TL9

S0 1 1 1 1 1 1 1 1 1

S1 1 1 1 1 1 1 1 1 0

S2 1 1 1 1 1 1 1 0 1

S3 1 1 1 1 1 1 0 0 0

S4 1 1 1 1 0 0 0 1 1

S5 1 1 1 1 0 0 0 1 0

S6 1 1 1 1 0 0 1 0 1

S7 1 1 1 1 0 0 1 0 0

S8 − S503 ... ... ... ... ... ... ... ... ...

S510 0 0 0 0 0 0 0 0 1

S511 0 0 0 0 0 0 0 0 0

Classification of the system states is represented by a 1 × 2n vector denoted

as u. Element u[i] is ‘1’ if the system is considered functional in state Si, and ‘0’

otherwise.

The third element of the MIS model is a vector representing the probability of

being in each of the 512 states when the system is initialized. In this vector, denoted

as Π0, element i represents the probability of having an initial state of Si, as is shown

in Equation (3.1).

Π0 = [Pr(Y0 = S0), P r(Y0 = S1), ...., P r(Y0 = SN)] (3.1)
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Linking the state matrix and initial state vector is a set of state transition

probability matrices - one for each transmission line. In the Λk matrix, which reflects

the effect of outage of transmission line k, element pij(k) represents the probability

of the system changing from state Si to state Sj due to outage of the transmission

line. For instance, if line TL9 fails, the state of the system will change from S0 to S1,

as shown in Table 3.1.

System-level reliability of the n-component system can now be determined as:

Rsys = Π0

n∏
k=1

Λku (3.2)

The probabilities required for populating this model can be determined based

on historical data or simulation. For the case studies presented in this thesis, we

used the Power Systems Analysis Toolbox (PSAT), an open source Matlab toolbox

for analysis and design of electric power systems [6]. The choice of simulator was

based on the ability to simulate components of the cybor infrastructure of a smart

grid with high fidelity and resolution.

To determine the net effect of introducing cyber infrastructure to a physical

power grid, we compare the system-level reliability for the purely physical grid and the

smart grid created by adding intelligent control. Each case, respectively, is described

in one of the two subsections that follow. In both cases, we classify the system

states by utilizing fault injection and N − 1 contingency analysis, i.e., we cause the

components of the grid to fail, one-at-a-time, and observe the effects. In evaluating

reliability, we consider the grid to have “failed” at the system level if cascading failure

occurs, i.e., if the component failure caused by injection of a single fault results in

failure of at least one other component. The data from N − 1 contingency analysis is

used to populate the u vector.
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3.1.1 Reliability of a Purely Physical Power Grid Based on Equation

(3.2), the reliability of a purely physical power grid can be represented as in Equation

(3.3), where pL denotes the reliability of a transmission line. For tractability, all

lines have been assumed to be equally reliable. Relaxing this assumption requires

only a minor change to the model, akin to changing a homogeneous Bernoulli trial

to its non-homogeneous counterpart. qTL = 1 − pTL is the unreliability of a line. n

represents the number of transmission lines. M denotes the number of transmission

lines whose outage does not cause a cascading failure.

Rsys = pnL +Mpn−1L qL (3.3)

3.1.2 Reliability of a Smart Grid To determine the effect of adding cyber

infrastructure to a physical grid to create a smart grid, we add a number of FACTS

devices to purely physical grid. The concept of FACTS devices refers to a family of

power electronics-based devices that are able to enhance AC system controllability

and stability and to increase the power transfer capability [12]. These devices were

developed by the Electrical Power Research Institute (EPRI) in the 1980s. FACTS

devices enhance the power grid with features such as increased transmission capacity,

power flow control, and transient stability improvement [12].

In our simulations, we realized a smart grid by supplementing the simulated

IEEE 9-bus system with Static Synchronous Series Compensators (SSSCs), a type of

series FACTS devices that modifies the effective reactance of a line by generating and

injecting a series voltage through the line [29].

The PSAT environment allows the user to install an SSSC device on any

transmission line or bus and modify the configuration of the SSSC. We identified the

parameter that had the greatest effect on the power flow balance: the Percentage

Amount of Series Compensation (PASC) [13, 14]. This parameter ranges from 0 to
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99. A value of 0 means the existence of SSSC device has no effect on the transmission

line, even though it acts like a closed circuit breaker.

We added two FACTS devices to the IEEE 9-bus system to create its smart

grid counterpart, as depicted in Figure 3.2. This number is unrealistically large for

the scale of the network, but useful for illustration of the technique in a non-trivial

case. Once the number of control devices is decided, two questions remain: where

to place them, and how to configure their settings - in this case the PASC value.

Exhaustive search for an optimal solution is prohibitively complex for any grid of

non-trivial scale, but given the small scale of our example, feasible here. Details for

our case study are presented in Section 4.1.2. For larger systems, approaches utilizing

evolutionary computing have been proposed in the literature, e.g., in [30].

Per Equation (3.2), the reliability of the smart grid can be represented as:

Rsys = (pnL +Mpn−1L qL) pSSSC1 pSSSC2 + (
∑

∀states∈S

pn−1L qL) pSSSC1 pSSSC2 (3.4)

where:

M is the total number of states where the system remains functional despite

the outage of single line, whether or not SSSC devices are added.

S is the set of states where the system would have failed as a result of a single

line outage, but remains functional due to the addition and correct configuration of

the SSSC devices.

pSSSC1 and pSSSC2 are the respective reliabilities of the two SSSC devices.

If the system’s reliability is increased by our choice of position and configu-

ration for the SSSC devices, the u vector will have a greater number of functional
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Figure 3.2. Smart grid created by adding two of SSSC devices to the IEEE 9-bus
test system

states than its counterpart for the purely physical power grid. In other words, the set

S will be non-null.

3.2 SURVIVABILITY ANALYSIS

The ability of a system to continue operating and provide service, albeit with

lower performance, under adverse conditions (failure of one or more of its components)

is broadly defined as survivability. In other words, survivability can be defined as

the relationship between system conditions and service capacity, each of which is

quantified as a number between 0 and 1.
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In evaluating survivability, we consider both the condition and the service

capacity of the system. For instance, assume there is a power grid that has 10 trans-

mission lines, and three generators that provide total power of 400 MW. Assume a

failure caused by outage of two transmission lines that connect a 100 MW generator to

the power grid. The service capacity after failure would be 75% (of its nominal power

under normal operating conditions), and the system condition would be considered

80% of its nominal condition, as two of the ten transmission lines have failed.

The system condition levels are defined based on transmission line outages

that would cause a cascading failure that would affect the ability of the system to

serve its load, i.e., an outage that would cause the available power to be less than

the demand. The service capacity metric quantifies the inability to meet demand.

Mathematically, the system condition at time ti, denoted as α(i) is determined as:

α(i) = 1 − di
n− di−1

(3.5)

In Equation (3.5), n is the total number of transmission lines and di is the num-

ber of transmission lines that have experienced an outage or are otherwise unavailable

(unreachable) at time ti.

The service capacity, (β), is used to represent the impact of failure or outage

on the ability of the grid to meet its power demand. At a given time ti after a failure,

the service capacity can be calculated as:

β(i) =
PG − PL(i)

LD
(3.6)

where PG is the power generated when the grid is fully functional, PL(i) is the

power lost due to failure up to time ti, and LD is the amount of power demand.
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The survivability index depends on the power available and connectivity of

the power grid after a failure, as well as the power demanded by loads. Equations 3.5

and 3.6 can be combined to yield the survivability index, denoted as SI:

SI =


0, when α = 0 or β = 0

1, when (α ≥ γ and β ≥ 1)

α ∗ β, when (α < γ and 0 < β < 1)

(3.7)

In Equation 3.7, γ is the minimum system condition that will prevent failure

of a generator or inability to serve a load.

We can qualitatively describe the survivability index as follows:

� If one or more transmission lines have failed, but the generated power is not

reduced to less than the demand in a specific time interval, then the SI value

is 1. This means the system is stable.

� If all the transmission lines fail, or if a failure in the system reduces the generated

power to zero, then the SI value will be 0.

� If one or more transmission lines fail and therefore reduce the generated power

to less than the demand, in a specific time interval, then the SI value will be

less than 1. This case is important for determining the level of degradation.

Based on the survivability index, five different levels of degradation were de-

fined, as described in Table 3.2.

These values can be used to determine a recovery strategy, as described in the

following section. In brief, the transmission line whose failure leads to the greatest

degradation (lowest SI value) is considered the highest priority transmission line, the
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Table 3.2. System degradation levels.

SI value
Degradation

levels
Description

SI = 1 1 Stable
Failure of components with

no impact

0.8 ≤ SI < 1 2 Minor
Failure of components has

little impact

0.6 ≤ SI < 0.8 3 Moderate
Failure of components has

modest impact

0.4 ≤ SI < 0.6 4 Severe
Failure of components has

high impact

SI < 0.4 5 Catastrophic
Failure of components leads

to system collapse

transmission line whose failure leads to the second-lowest SI value is considered the

second highest priority transmission line, and so on.

3.3 STRATEGY FOR RECOVERY FROM AN OUTAGE

The proposed recovery process is comprised of three stages. In the first stage,

the load demand in the system is reduced after the occurrence of a failure. This will

help the system temporarily meet demand. The second stage consists of repairing

transmission lines, one-at-a-time, based the assumption of the availability of a single

recovery team. In grids larger than our simple exam, this assumption can be relaxed

to allow for concurrent recovery of multiple lines. The recovery sequence depends

on the priority index of each transmission line, which is determined based on the

contribution of the line to the survivability index.

The most important stage is the third stage. This stage involves increasing

the generated power to meet the load demand and to reach the initial operational

level. The recovery strategy aims to restore the system to full capacity in the shortest

possible time. This goal guides the recovery sequence, prioritizing repair of the line

that will enable the system to provide the highest amount of generated power in the
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shortest time. For each transmission line, i we compute Oi = Pr(i)
Dr(i)

, where Pr(i) and

Dr(i), respectively, are the power recovered as a result of repairing line i and the time

required for this recovery. The line with the greatest value of O - the recovery rate

of power - is given the highest priority for recovery. The process is repeated until all

transmission lines have been recovered.



21

4 SIMULATION ENVIRONMENT

This section illustrates the methods described in Section 3 through application

to a simple test system - the IEEE 9-bus grid. The methods can be scaled to much

larger grids; a small example was chosen in the interest of clarity and brevity. As

briefly described in the previous section, the IEEE 9-bus test system, depicted in

Figure 3.1 and repeated here in Figure 4.1 for ease of reference, is comprised of:

1. Nine transmission lines - three to deliver the power from the generators to the

network and the rest to distribute the power.

2. Three generators, connected to buses 1, 2, and 3, respectively.

3. Three loads, connected to buses 5, 6, and 8, respectively.

4. Nine buses, connecting the transmission lines, loads and generators.

.

For simulation purposes, bus number 1, connected to the slack generator, is

used as the reference bus. The generator capacity on bus 1 is 72 MW, the generator

capacity on bus 2 is 163 MW, and the generator capacity on bus 3 is 85 MW. The

load on bus 5 is 125 MW, the load on bus 6 is 90 MW, and the load on bus 8 is 100

MW [31,32].

The following three subsections, respectively, illustrate reliability analysis (de-

scribed in Section 3.1), survivability analysis (described in Section 3.2), and recovery

(described in Section 3.3) for the example of the IEEE 9-bus test system and an

analogous smart grid.
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Figure 4.1. IEEE 9-bus test system

4.1 RELIABILITY ANALYSIS

In this section, we use simulation to populate the reliability models derived in

Sections 3.1.1 and 3.1.2 for conventional and smart version, respectively, of the IEEE

9-bus system.

4.1.1 Reliability of a Purely Physical IEEE 9-Bus Grid. The

reliability of a purely physical (with no intelligent devices such as SSSC), denoted as

Rsys, was derived as a function of the line reliability, pL, in Equation 3.3 as Rsys =

pnL+Mpn−1L qL. This model reflects the reliability of a grid where only one transmission

line outage can be tolerated at any given time. The outage of more than one line is
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assumed to bring down the entire grid (due to its small size). This model will apply to

any grid with equally reliable transmission lines. The value of pL can be determined

from the system history, or the specification of the transmission lines. The value of

M , which reflects the number of transmission lines whose outage does not result in

cascading failure. For our case study, this value is determined using simulation, with

PSAT [6]. More specifically, we carried out N − 1 contingency analysis by causing

an outage of one transmission line at a time, and conducting power flow analysis to

determine whether a cascading failure would result. Table 4.1 shows the results of

the simulation. This evaluation revealed that all but two transmission lines cause a

cascading failure when they experience an outage. These transmission lines are lines

1 and 6, circled in Figure 4.2. The results show that M = 2, in other words, two

states exist where the outage of one transmission line leaves the system functional.

The system reliability can be represented as:

Rsys = pL
9 + 2pL

8qL (4.1)

Table 4.1. Cascading failures of the purely physical IEEE 9-bus system

Line outage injected First line to fail Second Third Fourth System state

1 1 Functional

2 2 4 7 Failed

3 3 4 Failed

4 4 2, 3 7 Failed

5 5 4 2, 3 7 Failed

6 6 Functional

7 7 Failed

8 8 Failed

9 9 Failed
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Figure 4.2. Transmission lines whose outage will not cause cascading failure

4.1.2 Reliability of a Smart Grid Based on the IEEE 9-Bus System.

As described in Section 3.1.2, in an effort to mitigate the effects of line outage and

increase reliability, two SSSC devices were installed on the IEEE 9-bus system being

simulated. Placement of the devices was determined by inspection - the small size

of the grid resulted in only
(
9
2

)
= 36 cases to be investigated. As mentioned earlier,

evolutionary computing approaches, e.g., [30] can be used if the size of the grid makes

exhaustive inspection prohibitively costly.

Of the 36 cases investigated, only two configurations led to improvement of

reliability of the system. This improvement is achieved by isolating a line outage
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and preventing it from triggering a cascading failure. The first configuration that

achieved reliability improvement involved placing the SSSCs on transmission lines 2

and 4, as shown in Figure 4.3. Similarly determined by inspection were the PASC

values for the SSSC devices, which range from 0 to 99 and characterize the extent of

series compensation carried out by the device. For the configuration of Figure 4.3,

PASC values between 45 and 65 led to improvements in reliability. Utilizing the SSSC

devices with this placement and configuration reduced the single-line contingencies

that result in system-level failure from seven to four cases. The corresponding PSAT

power flow simulation results are shown in Table 4.2. It is worth noting that the

single-line contingencies resulting from outage of lines 7, 8, or 9 do not cause cascading

failure of transmission lines, but still lead to a failed system state. The reason is that

each of these lines connects one of the three generators to the remainder of the grid,

and outage of any of these three lines will disconnect a generator and will leave the

system unable to meet the load demand.

Table 4.2. Failure propagation in IEEE 9-bus smart grid, SSSCs on lines 2 and 4

Line outage injected First line to fail Second Third Fourth System state

1 1 Functional

2 2 Functional

3 3 Functional

4 4 3 Failed

5 5 Functional

6 6 Functional

7 7 Failed

8 8 Failed

9 9 Failed
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Figure 4.3. Configuration 1 for IEEE-9 smart grid: SSSCs on lines 2 and 4

The second configuration that improved reliability resulted from placing the

SSSC devices on transmission lines 3 and 4, as shown in Figure 4.4. PASC values

between 48 and 63 led to this improvement. This configuration also reduced the

single-line contingencies that cause system-level failure from seven to four cases. The

corresponding PSAT power flow simulation results are shown in Table 4.3.

Quantitatively, the two configurations were found to be identical in their effect

on reliability. In both cases, using the two SSSC devices increased the number of states

where the system remains functional despite single-line contingency from two to five

states. Assuming that both SSSC devices are impervious to failure, the reliability of

the grid can be represented as in Equation 4.2.



27
WSCC 3-machine, 9-bus system (Copyright 1977)

Line9

Line8Line7

Line6Line5

Line4 Line3

Line2 Line1

Bus 9

Bus 8

Bus 7

Bus 6Bus 5

Bus 4

Bus 3Bus 2

Bus 1

Generator

Load

Transmission line

Bus

FATCS device 
(SSSC)

Figure 4.4. Configuration 2 for IEEE-9 smart grid: SSSCs on lines 3 and 4

Rsys = p9L + 5p8LqL (4.2)

With the more realistic assumption that the SSSC devices are themselves prone

to failure, Equation 4.3 represents the resulting reliability.

Rsys = (p9L + 5p8LqL) pSSSC1 pSSSC2 (4.3)
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Table 4.3. Failure propagation in IEEE 9-bus smart grid, SSSCs on lines 3 and 4

Line outage injected First line to fail Second Third Fourth System state

1 1 Functional

2 2 Functional

3 3 Functional

4 4 2 7 Failed

5 5 Functional

6 6 Functional

7 7 Failed

8 8 Failed

9 9 Failed
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Figure 4.5. Reliability improvement with pSSSC = 1, pSSSC = 0.99, and
pSSSC = 0.95, respectively

Figure 4.5 illustrate the reliability improvement achieved by fortifying the

IEEE 9-bus grid with two SSSC devices, for different values of transmission line and
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SSSC reliability. It is worth noting that transmission line reliability is unlikely to

reach values as low as 0.5 in anything other than disaster scenarios. In Figure 4.5,

both SSSC devices are assumed to have the same reliability, denoted as pSSSC .

4.2 SURVIVABILITY ANALYSIS

In Section 3.2, we described our proposed survivability index, which is based

on the condition (extent of outage) in the grid and the resulting loss of capacity. In

this section, we illustrate evaluation of this survivability index for the IEEE 9-bus

grid, which generates 320MW of power using three generators. The three loads on

the grid have a total demand of 315MW. In simulating the grid, we assume that each

generator can exceed its rated capacity by 10% to compensate for failure of another

generator, or in response to increased demand.

In the following subsections, we illustrate by example evaluation of the system

condition, service capacity, and survivability index for the IEEE 9-bus grid.

4.2.1 Evaluation of System Condition After Line Outage The results

of the N − 1 contingency analysis described in Section 4.1.1 demonstrated that in

the absence of SSSC devices, seven of the nine possible single-line contingencies will

cause system-level failure. The respective outage of four different lines will trigger a

cascading failure, and respective outage of three others will disconnect a generator

from the system. In reliability analysis, we are interested only in the end state

of the system after a line outage, i.e., can the outage be tolerated or will it bring

down the grid? Survivability analysis takes a more nuanced view and evaluates the

system as it degrades (or recovers). One of the two components that determine the

level of survivability (as defined by our metric) is the system condition, α, which is

determined as in Equation 3.5: α(i) = 1 − di
n−di−1

. In brief, the system condition at

time i is evaluated as the fraction of transmission lines that remain functional and

reachable by that time.
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A complication in evaluating the system condition is lines with unknown sta-

tus. These transmission lines may be functional, but they are unreachable due to

outage of one or more other lines. For the example of our case study, we begin with

a fully-functional grid, where all nine transmission lines are operational. Now as-

sume that line 2 experiences an outage at the end of the first time slot. This outage

propagates to line 4 by the end of the second time slot. The second outage leaves

line 7 unreachable. The question in such a situation is what to assume about the

transmission line that becomes unreachable, as in the absence of communication, it is

unknown whether the line is functional or has failed. If the line were simply omitted

from the analysis, valuable information - namely, that line 7 had survived for at least

two time slots - will be lost.

Table 4.4 illustrates evaluation of the system condition for this example, which

is triggered by the outage of line 2. The value in columns 1 through 4 denotes the

number of lines with that status. A line is considered at risk if it can potentially fail.

A line is considered unavailable if it is known to have experienced an outage or is

unreachable. The number of unavailable lines at time i is di. For the example of the

IEEE 9-bus grid, n = 9.

The table was populated as follows. Of the nine transmission lines initially

at risk, one line had failed by t1. The number of the functional transmission lines

at t1 was calculated as 9 − 1 = 8, and the number of the transmission lines at risk

at t2 was calculated as 9 − 0 − 1 = 8. When another transmission line fails by t2,

the number of functional transmission lines becomes 8 − 1 = 7, and the number of

the transmission lines at risk at the beginning of time slot 3 (ending at t3) becomes

8− 0− 1 = 7. A third transmission line becomes unavailable during time slot 3. The

number of functional transmission lines at t3 3 was calculated as 7 − 1 = 6, and so

on.
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Table 4.4. Evaluation of system condition over time

Time
At
risk

Unreachable Outages
Unavailable

(di)
Functional Condition

t1 9 0 1 1 8 1-(1/9)=0.89

t2 8 0 1 2 7 1-(2/8)=0.75

t3 7 1 0 3 6 1-(3/7)=0.57

t4 6 0 0 3 6 1-(3/6)=0.5

Table 4.5 shows how the α value for four time slots after each single-line

contingency. Outage of lines 7, 8, or 9 will disconnect a generator and will immediately

cause failure, and hence the contingencies corresponding to these three lines have not

been included.

Table 4.5. System condition analysis for effective failures in IEEE 9-bus system

System condition at time

Injected contingency t1 t2 t3 t4

Line 1 0.89 0.87 0.87 0.87

Line 2 0.89 0.75 0.57 0.50

Line 3 0.89 0.75 0.71 0.71

Line 4 0.89 0.63 0.33 0.20

Line 5 0.89 0.75 0.43 0.14

Line 6 0.89 0.87 0.87 0.87

4.2.2 Evaluation of Service Capacity After Line Outage The second

component of the survivability index is the service capacity, β. As in Equation 3.6,

the service capacity at time i, denoted as β(i) = PG−PL(i)
LD

; where PG is the power

generated before the outage, PL(i) is the power lost by time i as a result of the

outage, and LD is the load demand. Service capacity is reduced by transmission line
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outages that cause overload and outage of the other transmission lines and/or cause

a generator or load to be disconnected.

Tables 4.6 and 4.7 show the service capacity that remains after a single-line

contingency is injected into the simulated IEEE 9-bus system. Table 4.6 evaluates

service capacity for contingencies that result in disconnection of a generator bus from

the system. Table 4.7 captures the result of contingencies that partition the power

grid into two or more networks,i.e., outage of lines 3 and 4, respectively; as well as the

result of outage of line 5, which disconnects a load bus from the system. The types

of failures depicted in the second table increase the power generated in one part of

the grid while decreasing the power generated in another part.

Table 4.6. Service capacity for outages that disconnect a generator bus

Injected
contingency

Available power
(MW)

Load demand
(MW)

Service capacity
β

1 322 315 1

2 172.7 315 0.54

6 322 315 1

7 172.7 315 0.54

8 258.5 315 0.82

9 272.8 315 0.86

4.2.3 Evaluation of Survivability and Degradation After determining

the values of both system condition and service capacity, we can evaluate the SI

(survivability index) of the grid using Equation 3.7 and determine the level of system

degradation based on Table 3.2. The resulting values after injection of a single-line

contingency on lines 1 through 6 are shown in Tables 4.8, 4.9, 4.10, 4.11, 4.12, 4.13,

4.14, 4.15 and 4.16; respectively.
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Table 4.7. Service capacity for outages that partition the grid

Injected
contingency

Available power
(MW)

Load demand
(MW)

Subsystem β Overall β

3
272.8 100 2.72

0.33
79.2 215 0.37

4
93.5 100 0.94

0.32
79.2 215 0.37

5
93.5 100 0.94

0.63
79.2 90 0.88

Table 4.8. Survivability and degradation after injection of contingency on line 1

Time System condition (α) Service capacity (β) SI Degradation level

t1 0.89 1 1 1

t2 0.87 1 1 1

t3 0.87 1 1 1

t4 0.87 1 1 1

Table 4.9. Survivability and degradation after injection of contingency on line 2

Time System condition (α) Service capacity (β) SI Degradation level

t1 0.89 1 1 1

t2 0.75 0.54 0.41 4

t3 0.57 0.54 0.31 5

t4 0.50 0.54 0.27 5

Figure 4.6 compares the survivability index subsequent to the injection of

respective single-line contingencies on lines 1 through 6. The outage of transmission

line 4 results in the fastest and most drastic decrease in survivability. After line

4, lines 5, 3, and 2, in order, resulted in the greatest decrease in survivability. All
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Table 4.10. Survivability and degradation after injection of contingency on line 3

Time System condition (α) Service capacity (β) SI Degradation level

t1 0.89 1 1 1

t2 0.75 0.33 0.25 5

t3 0.71 0.33 0.23 5

t4 0.71 0.33 0.23 5

Table 4.11. Survivability and degradation after injection of contingency on line 4

Time System condition (α) Service capacity (β) SI Degradation level

t1 0.89 1 1 1

t2 0.63 0.54 0.34 5

t3 0.33 0.32 0.11 5

t4 0.20 0.32 0.06 5

Table 4.12. Survivability and degradation after injection of contingency on line 5

Time System condition (α) Service capacity (β) SI Degradation level

t1 0.89 1 1 1

t2 0.75 1 1 1

t3 0.43 0.63 0.27 5

t4 0.14 0.63 0.09 5

four of these contingencies eventually cause SI to drop below 0.4, and as such, are

considered catastrophic. In contrast, the outage of lines 1 and 6, respectively, do not

affect survivability, i.e., SI = 1 despite these outages and the system remains stable.

Table 4.17 shows the survivability and degradation level attained at four time

slots after each single-line contingency, and ranks each line according to its SI value,

i.e., its importance to survivability. A rank of 1 is assigned to the most important



35

Table 4.13. Survivability and degradation after injection of contingency on line 6

Time System condition (α) Service capacity (β) SI Degradation level

t1 0.89 1 1 1

t2 0.87 1 1 1

t3 0.87 1 1 1

t4 0.87 1 1 1

Table 4.14. Survivability and degradation after injection of contingency on line 7

Time System condition (α) Service capacity (β) SI Degradation level

t1 0.89 0.54 0.48 4

t2 0.87 0.54 0.47 4

t3 0.87 0.54 0.47 4

t4 0.87 0.54 0.47 4

Table 4.15. Survivability and degradation after injection of contingency on line 8

Time System condition (α) Service capacity (β) SI Degradation level

t1 0.89 0.82 0.73 3

t2 0.87 0.82 0.71 3

t3 0.87 0.82 0.71 3

t4 0.87 0.82 0.71 3

line. This type of importance analysis can help in guiding recovery efforts, especially

in cases where a single repair team is available and the lines can be repaired only

one-at-a-time. It should be noted that in cases where cascading failure leads to

disconnection of a generator bus and/or load bus, the line that causes disconnection

of the generator should be the first to be repaired. The second line to be repaired

should be the line causing disconnection of the load bus. This order ensures that the
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Table 4.16. Survivability and degradation after injection of contingency on line 9

Time System condition (α) Service capacity (β) SI Degradation level

t1 0.89 0.86 0.77 3

t2 0.87 0.86 0.75 3

t3 0.87 0.86 0.75 3

t4 0.87 0.86 0.75 3
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Figure 4.6. Survivability index after injection of single-line contingencies

amount of generated power increases before the power demand increases and leads to

greater survivability.

4.3 RECOVERY STRATEGY

As an extreme example (for a grid of this size), we assume that five transmis-

sion lines have failed in the IEEE 9-bus system; two of them (lines 2 and 4) would
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Table 4.17. Survivability and degradation at four time periods after single-line
contingency

Line SI Degradation level Importance

1 1.00 1 6

2 0.27 5 4

3 0.23 5 3

4 0.06 5 1

5 0.09 5 2

6 1.00 1 5

normally connect loads to the grid, and the remaining three (lines 7, 8, and 9) would

connect the generators to the grid. Transmission line 7 connects a 163 MW generator

to the system, transmission line 8 connects an 85 MW generator to the system, and

transmission line 9 connects a 72 MW generator to the system.

We assume that each generator can provide 10% more power than its rated

capacity if any one of the other generators fail. This would happens in response

to load demand. If the power demand exceeds 110% of the generator’s ability, the

system becomes unstable.

We seek to use the information gleaned from survivability analysis to guide

recovery efforts for this scenario. The proposed recovery strategy has three stages.

The first stage works to balance the demand and supply, motivated by the fact that

a temporary reduction in demand can keep the system stable until recovery efforts

are completed. The second stage represents the repair of lines, one-by-one, in order

of their importance to survivability (determined as in Section 4.2.3).

The third stage is the most important stage in the recovery process. This stage

represents the repair of transmission lines used to connect to the generators, one-at-

a-time. The goal of this effort is to recover the greatest amount of power as quickly

as possible. In this example, lines 7, 8, and 9 are connected to generators. Assuming
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that they would take an equal time to repair, we determine the best recovery sequence

based on the power and capacity recovered. Table 4.18 summarizes the information

used in deciding on a recovery sequence for lines 7, 8, and 9.

Table 4.18. Comparison of recovery strategies

Recovery
sequence

After
first repair

After
second repair

After
third repair

Recovered
Power
(MW)

Regained
Capacity

Recovered
Power
(MW)

Regained
Capacity

Recovered
Power
(MW)

Regained
Capacity

9, 8, 7 79.2 25% 172.7 54% 320 100%

9, 7, 8 79.2 25% 258.5 80% 320 100%

8, 9, 7 93.5 29% 172.7 54% 320 100%

8, 7, 9 93.5 29% 272.8 85% 320 100%

7, 8, 9 179.3 56% 272.8 85% 320 100%

7, 9, 8 179.3 56% 258.5 80% 320 100%

As an example, the third recovery sequence in Table 4.18 is 8, 9, then 7. This

sequence recovers 85 MW of power after the first repair (line 8). Adding in the

potential 10% increase of power above the nominal capacity of the generator, the

recovered power will be 93.5 MW. After the second repair (line 9), an additional 72

MW of power is recovered. Allowing for the 10% increase, this brings the total to

172.7 MW, which is 54% of the service capacity of the system. After the third repair,

the 320 MW of power and the full service capacity are recovered.

All repairs have been assumed to be of equal duration, so the choice of recovery

sequence is based on the power recovered as a result of each repair. A greedy approach

is taken, whereby the line that yields the highest recovered power at each stage will

be selected. Specifically:
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Step 1 : First line to be repaired is the line that recovers the maximum power. The

three possible values are 163, 85, and 72, corresponding to the repair of lines 7,

8, and 9, respectively. Line 7 is selected for the first repair.

Step 2 : The choice is now between recovery of line 8 or 9, which will yield 85 or 72

MW of power, respectively. Line 8 is selected for the second repair.

Step 3 : The only line yet to be repaired is line 9, which is selected as the third

repair.

If the repair time would vary from line to line, the line whose repair would

recover the maximum amount of generated power in the least amount of time would

be selected for repair, meaning that the selection would be made based on the rate

of recovery.
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5 CONCLUSION AND FUTURE WORK

The goals of the research presented in this thesis were to: a) identify and

illustrate methods for quantifying reliability and survivability for smart grids, and

b) determine how to utilize this information in guiding recovery efforts. To this

end, a Markovian model was proposed for reliability. The model can be applied to

conventional or smart power grids, as it captures the system-level manifestation of

component-level faults, regardless of whether these faults are the result of defects in

cyber or physical components. The input to the model includes information on the

initial state of the system, transition probabilities, and classification of each possible

system state as functional or failed. This input information can be gleaned from

historical data or simulation. Our work was based on the latter. We illustrated the

approach using simulation of the classic IEEE 9-bus test system, and a smart grid

created by fortifying this system with two SSSC devices that are intended to isolate

failures and prevent cascades.

In evaluating survivability, we considered both the condition of the system,

expressed as the fraction of functional components; and the service capacity, expressed

as the fraction of load demand that can be met by the power available after an

outage. The resulting survivability index is the basis for determining the level of

degradation experienced by the system as a result of the outage. We illustrated

the use of this survivability index in determining a recovery strategy that recovers

the system capacity as quickly as possible. The methods proposed were illustrated

through application to a simulated IEEE 9-bus grid.

The work presented in this thesis can be used in the design stage of smart

grids to determine the most survivable design. It can be applied in the test stage

to assess reliability and survivability. It can also be used to guide investments in
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fortifying deployed systems. The end result of these efforts will be more reliable and

survivable power infrastructures that are better able to fulfill their crucial role as the

cornerstone of other critical infrastructures.

Future extensions to this work include validation with field data, stochastic

modeling of survivability, extension of the work to other dependability attributes - in

particular availability, and generalization of the approach to enable its application to

other cyber-physical infrastructures, such as intelligent water distribution networks

or transportation systems.
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