1969

Method for optimizing multi-layer insulation

William Donald Morath

Follow this and additional works at: http://scholarsmine.mst.edu/masters_theses

Part of the Mechanical Engineering Commons

Department: Mechanical and Aerospace Engineering

Recommended Citation

This Thesis - Open Access is brought to you for free and open access by the Student Research & Creative Works at Scholars' Mine. It has been accepted for inclusion in Masters' Theses by an authorized administrator of Scholars' Mine. For more information, please contact weaverjr@mst.edu.
METHOD FOR OPTIMIZING
MULTI-LAYER INSULATION

BY
WILLIAM DONALD MORATH, 1929-

A
THESIS
submitted to the faculty of
THE UNIVERSITY OF MISSOURI - ROLLA
in partial fulfillment of the requirements for the
Degree of
MASTER OF SCIENCE IN MECHANICAL ENGINEERING
Rolla, Missouri
1969

Approved by
(advisor)
ABSTRACT

The use of multi-layer insulation can result in reduced material cost, weight, or volume. A method for selecting layer materials is described. Each layer material is selected to operate at its upper temperature limit and to contribute to the overall performance of the wall. The analyses required for optimizing flat and cylindrical walls are developed.

Use of the digital computer makes it feasible to select layer materials from a large group of candidates. Fortran IV programs for optimizing flat and cylindrical walls are presented, and their use is demonstrated by the solution of example problems.

Methods for improving the usefulness of these programs are outlined.
ACKNOWLEDGMENT

The advice and encouragement of Dr. Harry J. Sauer, Jr. concerning the preparation of this thesis is sincerely appreciated.

Appreciation is also expressed to those companies who furnished insulation material cost and technical data.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vi</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>vii</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>METHOD OF APPROACH</td>
<td>4</td>
</tr>
<tr>
<td>A. ASSUMPTIONS</td>
<td>4</td>
</tr>
<tr>
<td>1. Materials Selection Criteria</td>
<td>4</td>
</tr>
<tr>
<td>2. Mode of Heat Transfer</td>
<td>4</td>
</tr>
<tr>
<td>3. Restriction on Conduction Equation</td>
<td>5</td>
</tr>
<tr>
<td>B. BASIC SELECTION PROCEDURE</td>
<td>5</td>
</tr>
<tr>
<td>DETAILED ANALYSIS</td>
<td>9</td>
</tr>
<tr>
<td>A. FLAT WALL</td>
<td>9</td>
</tr>
<tr>
<td>B. CYLINDRICAL WALL</td>
<td>11</td>
</tr>
<tr>
<td>1. Derivation of Parameter Equation</td>
<td>11</td>
</tr>
<tr>
<td>2. Technique for Determining Internal Radius</td>
<td>13</td>
</tr>
<tr>
<td>3. Technique for Determining External Radius</td>
<td>14</td>
</tr>
<tr>
<td>RESULTS</td>
<td>19</td>
</tr>
<tr>
<td>A. FLAT WALL PROGRAM</td>
<td>19</td>
</tr>
<tr>
<td>1. Input</td>
<td>19</td>
</tr>
<tr>
<td>2. Output</td>
<td>21</td>
</tr>
<tr>
<td>3. Solution Evaluation</td>
<td>27</td>
</tr>
<tr>
<td>B. CYLINDRICAL WALL PROGRAM</td>
<td>29</td>
</tr>
<tr>
<td>1. Input</td>
<td>29</td>
</tr>
<tr>
<td>2. Output</td>
<td>32</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Logic Diagram</td>
<td>6</td>
</tr>
<tr>
<td>2. Sketch of radius selection problem</td>
<td>15</td>
</tr>
<tr>
<td>3. Initial value selection for iteration technique</td>
<td>18</td>
</tr>
<tr>
<td>4. Flat wall data cards</td>
<td>20</td>
</tr>
<tr>
<td>5. Material array output</td>
<td>22</td>
</tr>
<tr>
<td>6. Flat wall problem statements</td>
<td>23</td>
</tr>
<tr>
<td>7. Flat wall weight solution output</td>
<td>25</td>
</tr>
<tr>
<td>8. Flat wall multi-option solution output</td>
<td>26</td>
</tr>
<tr>
<td>9. Flat wall proportionality constants</td>
<td>28</td>
</tr>
<tr>
<td>10. Flat wall minimum cost optimization</td>
<td>30</td>
</tr>
<tr>
<td>11. Cylindrical wall data cards</td>
<td>31</td>
</tr>
<tr>
<td>12. Cylindrical wall problem statement</td>
<td>33</td>
</tr>
<tr>
<td>13. Cylindrical wall multi-option solution output</td>
<td>34</td>
</tr>
<tr>
<td>14. Cylindrical wall minimum cost optimization</td>
<td>38</td>
</tr>
<tr>
<td>15. Cylindrical wall minimum weight optimization</td>
<td>39</td>
</tr>
<tr>
<td>16. Cylindrical wall minimum volume optimization</td>
<td>40</td>
</tr>
</tbody>
</table>
NOMENCLATURE

ALGEBRAIC

A - Surface Area, ft^2
B - Proportionality Constant, inch-BTU/ft^2-hr
C - Constant, $$/\text{ft}^3$$, lb/\text{ft}^3$$, or ft^3/\text{ft}^3$
D - Proportionality Constant, $-$-BTU$/\text{ft}^4$-hr, lb-BTU$/\text{ft}^4$-hr, or ft3-BTU$/\text{ft}^4$-hr
h - Convection Heat Transfer Coefficient, BTU/hr-ft^2-°F
k - Thermal Conductivity, BTU/hr-ft^0-°F
L - Length, ft
N - Maximum Number of Wall Layers
P - Cost, dollars; Weight, lb; or Volume, ft3
q - Heat Transfer Rate, BTU/hr
R - Radius, ft
S - Cost per Unit Volume, $$/\text{ft}^3$
t - Temperature, °F
Δt - Temperature drop, °F
V - Volume, ft3
X - Thickness, inches
ρ - Mass Density, lb/ft3
SUBSCRIPTS

A - Allowable heat loss
C - Cold Surface or fluid
h - Hot Surface or convective value
i - Any Location from 1 to n in Material Array
j - Any Wall Layer from 1 to n
j_n - Iteration Values of Layer Radius, n=1,2,3, etc.
min - Minimum
n - Last Layer of a Wall or Last Material of Array
o - Refers to Radius of Cylinder to be Insulated
FORTRAN

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Surface Area, ft^2</td>
</tr>
<tr>
<td>AK</td>
<td>Conductivity, BTU/hr-ft-°F</td>
</tr>
<tr>
<td>CON</td>
<td>Conductivity, BTU/hr-ft-°F</td>
</tr>
<tr>
<td>DT</td>
<td>Temperature Drop, °F</td>
</tr>
<tr>
<td>H</td>
<td>Convection Heat Transfer Coefficient, BTU/hr-ft^2-°F</td>
</tr>
<tr>
<td>I</td>
<td>Material Array Index</td>
</tr>
<tr>
<td>J</td>
<td>Wall Layer Index</td>
</tr>
<tr>
<td>L</td>
<td>Length of Cylinder, ft</td>
</tr>
<tr>
<td>NINP</td>
<td>Output Option Control Input</td>
</tr>
<tr>
<td>NL</td>
<td>Layer Limit Control Input</td>
</tr>
<tr>
<td>NPROG</td>
<td>Optimization Option Control Input</td>
</tr>
<tr>
<td>Q</td>
<td>Heat Flow Rate, BTU/hr</td>
</tr>
<tr>
<td>RBIG</td>
<td>Large Radius of a Layer, ft</td>
</tr>
<tr>
<td>RSML</td>
<td>Small Radius of a Layer, ft</td>
</tr>
<tr>
<td>RO</td>
<td>Density, lb/ft^3</td>
</tr>
<tr>
<td>RIN</td>
<td>Radius of Cylinder to be Insulated, ft</td>
</tr>
<tr>
<td>SU</td>
<td>Cost per Unit Volume, $/ft^3</td>
</tr>
<tr>
<td>TC</td>
<td>Cold Temperature of Wall or Fluid, °F</td>
</tr>
<tr>
<td>TH</td>
<td>Hot Temperature of Wall, °F</td>
</tr>
<tr>
<td>T</td>
<td>Allowable Operating temperature of a Material or Surface temperature of a layer, °F</td>
</tr>
</tbody>
</table>
INTRODUCTION

Thermal insulation is employed for a variety of reasons. It is used to provide a safe or compatible environment for men, equipment, and materials. It is also used to reduce energy loss, and it is used to maintain desired process temperatures. Regardless of the reason for using thermal insulation, the desired objectives are accomplished because heat flow and/or temperature are controlled.

Many insulation problems can be stated in terms of steady, one dimensional heat flow, temperature, and geometry requirements. The proper thickness of a material that will withstand the operating temperature range will be a solution to a particular problem (assuming the material is compatible with other environmental conditions); however, an optimum solution which results in minimum cost, weight, or volume is usually desired. Cost is of major importance to process, power generation, and fabrication industries where large quantities of insulation materials are involved. Minimum weight or volume are often of primary concern to the aerospace and transportation industries.

It may be necessary to use more than one layer of insulation to obtain an optimum solution to a problem. For industrial applications, a multi-layer wall should be considered when the single layer solution has a thickness of three or more inches (1)*. In addition, many high temperature applications require the use of composite walls to minimize thermal gradient stressing of the insulation (2).

* Denotes References
Selection of the optimum insulation configuration requires knowledge of all possible candidate materials and a comparison of the analyses of all possible composite walls constructed of these materials. The first, or hottest layer, of the composite wall is composed of the material which would result in the optimum single layer wall. It is selected from all materials with maximum operating temperatures equal to or above the hot temperature of the problem statement. The second layer is composed of the material which would be used with the optimum two layer wall. It would be selected from all materials with maximum operating temperatures less than the hot temperature of the problem statement and greater than the cold temperature of the problem statement. The third and subsequent layers are selected by the same method as the second.

Because of the large number of available insulation materials, the manual computation of an optimum composite wall can become extremely time consuming. However, the repetitive nature of these calculations is ideally suited to digital computer solution. Solution techniques for flat and cylindrical composite wall configurations were programmed for the IBM System 360/50 computer in the Fortran IV language. The program listings are presented in Appendices I and II. These computer programs may be used to solve directly for the composite wall of minimum cost, weight, or volume. The programs can also be used in the solution of the type of problem where it is desired to obtain a composite wall configuration that results in overall economy when variables such as cost of heat energy, installation cost, and cost of capital at various periods of amortization are to be considered.
In such cases the minimum cost wall may be determined as a function of heat flow rate for different numbers of layers and the results cross plotted with the other variables as a function of heat flow rate.
METHOD OF APPROACH

The methods for determining optimum flat and cylindrical composite insulation configurations are similar. In each case a minimum cost, weight or volume configuration is defined by the proper selection and sizing of layer materials.

The simplifying assumptions and basic materials selection procedures are described in this section. Detailed methods of analyses are presented in the DETAILED ANALYSIS SECTION.

A. ASSUMPTIONS

Unless otherwise stated the following assumptions are applicable to both flat and cylindrical insulation configurations:

1. Material Selection Criteria

It is assumed that an insulating material may be selected on the basis of two criteria. The first criterion is that the service temperature of the material is not exceeded by the maximum temperature it will encounter in the application. The second criterion is that the material of any additional layer provide improved performance over the previous layer.

2. Mode of Heat Transfer

It is assumed that heat transfer in the composite wall is by conduction alone. The thermal contact resistances between adjacent layers are neglected for simplicity. To account for the variation of surface area and temperature with radius, convection at the exterior surface of the cylindrical wall is considered. A constant value of film coefficient is assumed. For simplicity the heat transfer external to the flat wall and at the interior of the cylindrical wall
is not considered.

3. **Restriction on Conduction Equation**

Conduction is assumed to be steady with time and one-dimensional in the direction perpendicular to the surface of the wall. The material of each layer is homogeneous in the direction of heat flow, of constant conductivity, and free of sources and sinks.

B. BASIC SELECTION PROCEDURE

The procedures for selecting optimum flat and cylindrical composite walls follow the same general logic pattern. The diagram of this flow pattern is shown in Fig. 1.

Input consists of an array of material data, a problem statement, and necessary control numbers. The maximum operating temperature, conductivity, cost per unit volume, and density of each material are input as follows:

\[
\begin{align*}
& t_1, k_1, s_1, \rho_1 \\
& t_2, k_2, s_2, \rho_2 \\
& \vdots \\
& t_l, k_l, s_l, \rho_l \\
& t_n, k_n, s_n, \rho_n
\end{align*}
\]

The flat wall problem statement lists the hot and cold surface temperatures, heat flow rate, and surface area as \(t_h, t_c, q, \) and \(A, \) respectively. The cylindrical problem statement lists the internal hot surface temperature of the cylinder, fluid temperature, heat flow rate, length of cylinder, film coefficient, and internal radius as \(t_h, t_c, q, l, h, \) and \(R_o, \) respectively.
INPUT
1 - MTL. ARRAY
2 - PROBLEM

SELECT CANDIDATE 1ST LAYER MTL'S.

MAKE COST CONST. ARRAY
MAKE WEIGHT CONST. ARRAY
MAKE VOLUME CONST. ARRAY

COST OPTION VOLUME WEIGHT

DO 100 J=1,N

SELECT CANDIDATE 1ST LAYER MTL'S.

CALCULATE P FOR EACH CANDIDATE 1ST LAYER MTL.

FIND P_min
WRITE P_min
CK. = P_min

CALCULATE P FOR A MULTI-LAYER WALL USING EACH CANDIDATE MTL. AS THE NEW LAYER

FIND P_min
WRITE P_min

YES IS P_min ≤ CK.
NO WRITE CK.

CK. = P_min

100 CONTINUE END
Following the option selection, a list of material constants, c_i, equal to S_i, R_i, or unity is stored respectively for the minimum cost, weight, or volume option.

Next a control loop is entered. The control loop requires the operations that follow it to be executed N (an input control number) times. On the first pass through the control loop, the optimum first layer material is selected and optimum single layer wall is sized by performing the operations on the left side of Fig. 1. A new layer material is selected on each subsequent pass through the loop. If the new optimum wall has a lower value of P than the previous optimum wall its description is written.

First layer candidate materials have allowable operating temperatures that are equal to or greater than the hot temperature of the problem statement, i.e., $t_i \geq t_h$. The parameter P is the cost, weight, or volume of the wall that satisfies the problem statement. For a single layer flat wall,

$$ P = \frac{A^2}{q} (C_i k_i t_i - C_i k_i t_c). \quad (1) $$

For a single layer cylindrical wall,

$$ P = \pi l (C_i R_i^2 - C_i R_o^2). \quad (2) $$

P values are calculated for each first layer candidate material, and the material that produces the lowest value of P is selected as the optimum first layer material.

On each subsequent pass through the loop candidate, next layer materials are selected. These candidate materials have operating temperature limits which are between the hot and cold temperatures
given in the problem statement, i.e., \(t_k > t_{i-1} > t_i > t_c \). The multi-layer flat wall \(P \) equation is

\[
P = \frac{A^2}{q} (k_1 c_i t_k - k_i c_{i-1} t_{i-1} + k_{i-1} c_{i-2} t_{i-2} - k_2 c_2 t_2 \cdots \\
+ k_2 c_2 t_2 - k_1 c_1 t_1 + k_1 c_1 t_1 + k_0 c_0 t_0 \cdots \\
+ k_n c_n t_n - k_{n-1} c_{n-1} t_{n-1}) \].
\] (3)

For the cylindrical wall

\[
P = \pi \ell \left[-C_1 R_1^2 + C_1 R_1^2 - C_2 R_2^2 + C_2 R_2^2 \cdots \\
- C_j R_j^2 \cdots + C_j R_j^2 \cdots - C_n R_n^2 \right] .
\] (4)

The thickness of the previous layer is reduced when a new layer is added. This thickness change results from changing the lower surface temperature from the cold temperature of the problem statement to the maximum operating temperature of the new layer material.
DETAILED ANALYSIS

In this section parameter equations are developed for the flat and cylindrical composite wall configurations. Techniques required to determine the internal and external radii of a cylindrical insulation layer are also presented.

A. FLAT WALL

Equations for calculating the volumes of each of the layers of an \(n \) layer composite wall are as follows:

\[
\begin{align*}
V_1 &= A X_1 \\
V_2 &= A X_2 \\
&\vdots \\
V_j &= A X_j \\
&\vdots \\
V_n &= A X_n
\end{align*}
\]

In these equations \(A \) is the surface area, and each \(X_j \) is a layer thickness. By multiplying each volume equation by a constant, \(C_j \), the set of parameter equations

\[
\begin{align*}
P_1 &= C_1 V_1 = A C_1 X_1 \\
P_2 &= C_2 V_2 = A C_2 X_2 \\
&\vdots \\
P_j &= C_j V_j = A C_j X_j \\
&\vdots \\
P_n &= C_n V_n = A C_n X_n
\end{align*}
\]
are obtained in which each C_j parameter represent the cost, weight, or volume of a layer where each C_j value is equal respectively to the layer cost per unit volume, or density, or unity.

From Fourier's law, the thicknesses of wall layers are as follows:

$$x_1 = \frac{A}{q} k_1 \Delta t_1 = \frac{A}{q} k_1 (t_{h1} - t_2)$$

$$x_2 = \frac{A}{q} k_2 \Delta t_2 = \frac{A}{q} k_2 (t_2 - t_3)$$

$$\vdots$$

$$x_j = \frac{A}{q} k_j \Delta t_j = \frac{A}{q} k_j (t_j - t_{j+1})$$

$$\vdots$$

$$x_n = \frac{A}{q} k_n \Delta t_n = \frac{A}{q} k_n (t_n - t_c). \quad (6)$$

Each k_j value is the conductivity of the respective layer material and q is the heat flow rate that passes through each layer of the composite wall. Each pair of t_j and t_{j+1} values are respectively the hot and cold surface temperatures of the X_j thick layer. The hot surface temperature of the first layer is the hot surface temperature of the wall (t_h) given in the problem statement; and likewise, the cold temperature of the last layer is the cold temperature (t_c) of the problem statement.

By substituting equations (6) into equations (5), the set of layer parameter equations are obtained as follows:
The parameter equation for the total composite wall is obtained by summation of the above \(P_i \) equations. The composite wall equation is

\[
P_i = \frac{A^2}{q} k_i C_i (t_i - t_{i-1})
\]

The single layer equation, equation (1), is the single layer application of equation (3).

This equation was originally presented as equation (3) in the last section. The single layer equation, equation (1), is the single layer application of equation (3).

\[
P = \frac{A^2}{q} (k_1 C_1 t_1 - k_1 C_1 t_2 + k_2 C_2 t_2 - k_2 C_2 t_3 - \cdots + k_n C_n t_n - k_n C_n t_c).
\]

B. CYLINDRICAL WALL

1. Derivation of Parameter Equation

Let \(R_0 \) and \(l \) be the radius and length of a cylinder which is to be insulated. If \(R_1, R_2, \ldots, R_n \) are the outer radii of the insulation layers applied to the cylinder, then the volumes of each of the layers are as follows:
Let the parameter P_j be the total material cost, weight, or volume of any jth layer of material, and let C_j respectively represent the per unit volume, cost, weight, or volume of the layer material. The P_j values (cost, weight, or volume) of each layer of an n layer composite wall are represented by the following equations:

\[
P_1 = C_1 V_1 = \pi l \left[C_1 R_1^2 - C_1 R_o^2 \right] \\
P_2 = C_2 V_2 = \pi l \left[C_2 R_2^2 - C_2 R_1^2 \right] \\
\vdots \\
P_j = C_j V_j = \pi l \left[C_j R_j^2 - C_j R_{j-1}^2 \right] \\
\vdots \\
P_n = C_n V_n = \pi l \left[C_n R_n^2 - C_n R_{n-1}^2 \right]
\]

The parameter equation for the cylindrical composite wall is obtained by summation of the above P_j equations. The resulting equation
was first presented in the last section as equation (4). Equation (2) is the single layer application of equation (4).

2. Technique for Determining Internal Radius

When a candidate material is evaluated as a new, \(i = n \), layer, the external radius, \(R_{(i-1)} \), of the previous layer must be recalculated. Since \(R_{(i-1)} \) is also the internal radius of the new layer, the maximum allowable operating temperature of the new layer material will occur at the \(R_{(i-1)} \) surface contact cylinder.

Using this new external surface temperature for the previous layer, \(R_{(i-1)} \), may be calculated using the heat flow equation for the previous layer. The previous layer heat flow equation is

\[
q = \frac{2\pi l k_{(i-1)} \Delta t_{(i-1)}}{ln \left(\frac{R_{(i-1)}}{R_{(i-2)}} \right)}
\]

The \(R_{(i-2)} \) is the internal radius of the previous layer and \(k_{(i-1)} \) and \(\Delta t_{(i-1)} \) are respectively its conductivity and temperature drop. The temperature drop equals the difference between the hot surface temperature of the previous layer and the maximum allowable operating temperature of the new layer candidate material.

The internal radius of the new candidate layer is obtained by solving equation (8) for \(R_{(i-1)} \). The resulting equation is
3. Technique for Determining External Radius

To apply the cylindrical parameter equation, it is necessary to know the external radius \(R_j \) of a \(j \) layer composite wall.

In this problem, as shown in Fig. 2, the heat flow rate, \(q \), the inner radius, \(R_{i-1} \), the fluid temperature, \(t_c \), the convection film coefficient, \(h \), and the conductivity, \(k \), of the candidate insulation material are known. The temperature, \(t_j \), that occurs at radius \(R_j \) as well as the \(R_j \) are unknown; therefore, two equations are required for solution.

For a steady state heat balance, the same heat flow rate, \(q \), must pass through the \(j \) layer material and the fluid film in contact with the surface generated by \(R_j \). The temperature \(t_j \) may be eliminated by addition of temperature difference equations for the insulation material and the fluid film.

Equation (8) can be rewritten to obtain the material, temperature difference as

\[
R_{(j-1)} = R_{(j-2)} \Theta \left[\frac{(2\pi k R_{(j-1)} \triangle t_{(j-1)})}{q} \right].
\] (9)

The temperature difference across the fluid film, by Newton's law of cooling, is given by the equation:
FIG. 2 - SKETCH OF RADIUS SELECTION PROBLEM
By addition of equations (10) and (11) and rearranging the sum, the equation,

\[
q \left[\frac{1}{k} \left(\ln R_i - \ln R_{i-1} + \frac{1}{k R_i} \right) \right] - 2\pi l \left[t_{i-1} - t_c \right] = 0, \tag{12}
\]

is obtained.

Since \(q \) is known, \(R_i \) is the only unknown and its value can be determined. However, equation (12) is a transcendental equation in \(R_i \), and a trial and error or an iteration technique must be used to solve it for the desired value of \(R_i \).

Newton's iteration technique (3) may be used to solve for \(R_i \). If \(R_{i,n} \) is the value of \(R_i \) after \(n \) iterations and if \(f(R_{i,n}) \) equals the value of the left side of equation (12), the equation for improving the accuracy of \(R_i \) is given by the equation,

\[
R_{i,(n+1)} = R_{i,n} - \frac{f(R_{i,n})}{f'(R_{i,n})}, \tag{13}
\]

where: \(f'(R_{i,n}) = q \left[\frac{1}{k R_{i,n}} - \frac{1}{k R_{i,n}^2} \right] \).

The iteration process must be started with an initial value of \(R_{i,0} \) that will assure convergence to the desired value of \(R_i \). When equation (12) is evaluated for \(q \) as a function of \(R_i \), \(q \) increases from zero at \(R_i = 0 \), to a maximum at the critical radius \((R_i = k/lk) \), and then decreases as \(R_i \) is further increased.
Figure 3 illustrates the variation of q with R_4 for two different values of κ, and shows the intersection of these two curves with two arbitrary values of maximum allowable heat loss, q_A. For convenience of presentation, h, and $R_{(i-1)}$, are set equal to unity; l is set equal to $\frac{1}{2\pi}$; and $[t_{(i-1)}-t_c]$ is set equal to 1000°F. With $R_{(i-1)}$ set equal to unity, the abscissa of Fig. 3 represents the radius ratio, $R_4/R_{(i-1)}$, as well as R_4. It is noted that curves for all values of κ will pass through the point on the unity radius ratio line where all heat loss is due to convection, q_A. The $\kappa=\frac{1}{2}$ and $\kappa=2$ curves are respectively typical of curves which peak to the left and right of this point.

The solution obtained by the intersections of q_A lines and κ curves at radius ratios of less than unity must be avoided as they represent negative layers thicknesses. Since the upper q_A value is greater than q_L, no solution is required. This example notes the necessity for initially calculating the convection heat loss from the uninsulated cylinder. When q_A is less than q_L, the intersections of a q_A line and κ curve is a desired solution. In Fig. 3 the right hand intersection of the lower q_A line and the $\kappa=\frac{1}{2}$ curve is an example of a desired solution.

From the above discussion it is seen that a desired solution for q_Aq_L will be obtained by setting R_4 to a value greater than the critical radius κ/h.
FIG. 3 - INITIAL VALUE SELECTION FOR ITERATION TECHNIQUE
RESULTS

The analyses methods and techniques described in the previous two sections resulted in the writing of two 360/50 computer programs in the Fortran IV language. Listings of the flat and cylindrical programs are presented in Appendices I and II respectively. Descriptive comment cards were inserted in each program deck. These comment cards describe input requirements and introduce major sections of analyses.

The material in this section is presented as a guide to users of the programs. Discussions of the input, output, and the solution to sample problems are presented for each program. Sample problems were solved using a material array containing data for 47 materials. The material data was obtained by a survey of insulation manufacturers.

A. FLAT WALL PROGRAM

1. Input

Figure 4 describes the data cards required with the flat wall program. All data cards are placed between a /DATA card and a /END card. This data pack is placed at the end of the program deck. Figure 4 shows the data cards in their proper sequence.

The Fortran name of each data item to be punched on a card are listed in order across the top of the card. The units for each data item are given below their Fortran names, and the Format to which the data are to be punched is given on each card.

The first data card specifies the size of the material array.

Each material data array card specifies, in order, the maximum allowed operating temperature, conductivity, cost per unit volume, and
FIG. 4 - FLAT WALL DATA CARD

Given conditions cards

Option card

Material array cards

Array size card

/END

<table>
<thead>
<tr>
<th>TH (°F)</th>
<th>TC (°F)</th>
<th>Q (BTU/hr)</th>
<th>A^2 (ft^2)</th>
</tr>
</thead>
</table>

FORMAT (4E10.5)

<table>
<thead>
<tr>
<th>NL</th>
<th>NINP</th>
<th>NPROG</th>
</tr>
</thead>
</table>

FORMAT (3I10)

<table>
<thead>
<tr>
<th>T(I)</th>
<th>AK(I)</th>
<th>SU(I)</th>
<th>RO(I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(°F)</td>
<td>(BTU/hr-ft-°F)</td>
<td>($/ft^3)</td>
<td>(lb/ft^3)</td>
</tr>
</tbody>
</table>

FORMAT (4E10.5)

<table>
<thead>
<tr>
<th>N</th>
</tr>
</thead>
</table>

FORMAT (I10)

/data
density of a particular material. All data for a particular material are given the same subscript by the computer. Subscripts are assigned one through N in the order that the cards are read.

The option card controls the number of layers at which optimization is to stop, print out of the material array, and the type of solution(s) to be found.

The material array is printed or not printed when NINP is given a value of two or one respectively. Given conditions are evaluated for minimum cost, weight, volume, or all three of these in order, when NPROG is assigned values of 1, 2, 3, or 4 respectively.

The hot and cold surface temperatures of the insulation wall, the heat flow rate through the wall, and the surface area of the wall are punched in order on a given conditions card. As many sets of given conditions as desired may be evaluated during one computer run.

2. Output

The program output presents three groups of information in order as follows: the material array; the problem statement; and the solution(s) to the problem statement. A material array output is shown in Fig. 5. As mentioned in a previous paragraph, the material array need not be printed. The problem statement and solutions are always printed.

The problem statement output describes the given conditions and required solution(s). Two problem statements are shown in Fig. 6. Figure 6 - a requires solution(s) to only one of three possible optimizations. Figure 6 - b requires that all three optimizations be made.

The computer program determines, in numerical order, the optimum wall configurations for all numbers of layers until the optimum number
THE MATERIAL DATA IS AS FOLLOWS:

<table>
<thead>
<tr>
<th>MATERIAL NO.</th>
<th>LIMIT TEMP.</th>
<th>CONDUCTIVITY Btu/(Hr-FT-°F)</th>
<th>COST $/(ET-SQ)</th>
<th>DENSITY LB./(CU.-FT.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>253.0</td>
<td>0.33400</td>
<td>0.6475</td>
<td>0.69</td>
</tr>
<tr>
<td>3</td>
<td>350.0</td>
<td>0.33400</td>
<td>0.6475</td>
<td>0.75</td>
</tr>
<tr>
<td>4</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>1.00</td>
</tr>
<tr>
<td>5</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>1.50</td>
</tr>
<tr>
<td>6</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>2.00</td>
</tr>
<tr>
<td>7</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>3.50</td>
</tr>
<tr>
<td>8</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.50</td>
</tr>
<tr>
<td>9</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>10</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>11</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>12</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>13</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>14</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>15</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>16</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>17</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>18</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>19</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>20</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>21</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>22</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>23</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>24</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>25</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>26</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>27</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>28</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>29</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>30</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>31</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>32</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>33</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>34</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>35</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>36</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>37</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>38</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>39</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>40</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>41</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>42</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>43</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>44</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>45</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>46</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
<tr>
<td>47</td>
<td>350.0</td>
<td>0.24670</td>
<td>1.3500</td>
<td>4.00</td>
</tr>
</tbody>
</table>

FIG. 5 - MATERIAL ARRAY OUTPUT
(a) Single option Problem Statement

(b) Multi-option Problem Statement
of layers is found or until the layer limit (NL) is reached. If the optimum number of layers is less than the layer limit, the optimum layer solution is repeated until NL solutions have been printed. Figure 7 shows the solutions for a minimum weight optimization with a specified layer limit of three.

The first three of the seven columns of data, that follow each weight-of-wall print, specify the design of the wall. The material numbers, thicknesses, and hot surface temperatures of each layer are specified. The material numbers refer to locations of the material data in the material array. The last four columns data are the same material properties found in the material array. The material data is reprinted with the solutions for user convenience. The solution(s) output format for cost and volume optimizations are similar to the one shown for weight.

It is noted that Fig. 7 shows that a three layer wall of less weight than the optimum two layer wall was not found; therefore, the two layer solution was reprinted to satisfy the three solution prints required by the layer limit.

When the problem statement requires the solutions of all three optimizations, the solutions for minimum cost, weight, and volume are printed in order for a single layer wall. The process is continued with the three solutions for a two layer wall, etc., until the layer limit is reached. A multi-option problem statement and a portion of the solution set is shown in Fig. 8. The material data portion of the solutions output is not shown in Fig. 8.

The program has a provision for rejecting unrealistic problems. The statement "NO SOLUTION" is printed if the materials array contains
THE MINIMUM WEIGHT 1 LAYER WALL
HAS A TOTAL WEIGHT OF 0.63684E 01 POUNDS

<table>
<thead>
<tr>
<th>MATERIAL NO.</th>
<th>THICKNESS INCHES</th>
<th>HOT SURFACE TEMP. DEG. F</th>
<th>MTL. TEMP. LIMIT DEG. F</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>0.15198</td>
<td>2200.0</td>
<td>2300.0</td>
</tr>
</tbody>
</table>

THE MINIMUM WEIGHT 2 LAYER WALL
HAS A TOTAL WEIGHT OF 0.5668E 01 POUNDS

<table>
<thead>
<tr>
<th>MATERIAL NO.</th>
<th>THICKNESS INCHES</th>
<th>HOT SURFACE TEMP. DEG. F</th>
<th>MTL. TEMP. LIMIT DEG. F</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>16.84462</td>
<td>2200.0</td>
<td>2300.0</td>
</tr>
<tr>
<td>1</td>
<td>1.06260</td>
<td>353.0</td>
<td>353.0</td>
</tr>
</tbody>
</table>

THE MINIMUM WEIGHT 2 LAYER WALL
HAS A TOTAL WEIGHT OF 0.5668E 01 POUNDS

<table>
<thead>
<tr>
<th>MATERIAL NO.</th>
<th>THICKNESS INCHES</th>
<th>HOT SURFACE TEMP. DEG. F</th>
<th>MTL. TEMP. LIMIT DEG. F</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>16.84462</td>
<td>2200.0</td>
<td>2300.0</td>
</tr>
<tr>
<td>1</td>
<td>1.06260</td>
<td>353.0</td>
<td>353.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COST $/(CU.-FT.)</th>
<th>DENSITY LB./(CU.-FT.)</th>
<th>CONDUCTIVITY BTU/(HR-FT-F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.540</td>
<td>4.00</td>
<td>0.07600</td>
</tr>
<tr>
<td>0.675</td>
<td>0.60</td>
<td>0.03500</td>
</tr>
<tr>
<td>0.540</td>
<td>4.00</td>
<td>0.07600</td>
</tr>
<tr>
<td>0.675</td>
<td>0.60</td>
<td>0.03500</td>
</tr>
</tbody>
</table>

FIG. 7 - FLAT WALL WEIGHT SOLUTION OUTPUT
<table>
<thead>
<tr>
<th>MATERIAL NO.</th>
<th>THICKNESS</th>
<th>HOT SURFACE TEMP. DEG. F</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>2.40000</td>
<td>500.0</td>
</tr>
<tr>
<td>37</td>
<td>3.64000</td>
<td>500.0</td>
</tr>
<tr>
<td>17</td>
<td>1.72000</td>
<td>500.0</td>
</tr>
</tbody>
</table>

FIG. 8 - FLAT WALL MULTI-OPTION SOLUTION OUTPUT
no material with an allowable operating temperature greater than the hot surface temperature of the problem statement.

3. Solution Evaluation

Inspection of the flat wall design equation (3) shows that the parameter being minimized is directly proportional to the square of the surface area and inversely proportional to the heat flow rate. Introducing the proportionality constant D, the design equation may be rewritten as:

\[P = \frac{DA}{q}. \] \hspace{1cm} (14)

The selection of layer materials, the temperature distribution in the selected layers, and therefore D are dependent only upon the type of optimization, the content of the material array, and the exterior surface temperature of the wall.

Review of the thickness equations (6) shows that the thickness of a wall layer is proportional to surface area and inversely proportional to heat flow rate. By introducing the proportionality constant B, layer thickness may be expressed:

\[x = \frac{B A}{q}; \text{ where } B = K \Delta t. \] \hspace{1cm} (15)

The computer program may be used to find the solution(s) to any particular problem statement. However, if the same material array is used, the solutions to all problems which have the same hot and cold temperatures will be proportional to each other. The solutions to a single problem statement can be used to calculate D and B constants. Equations (14) and (15) can then be used to define optimum walls with different areas and heat flow rates. Figure 9 is a tabulation of D and B values for walls with hot and cold temperatures of 2200°F.
Minimum Cost

<table>
<thead>
<tr>
<th>No. of layers</th>
<th>one</th>
<th>two</th>
<th>three</th>
<th>four</th>
</tr>
</thead>
<tbody>
<tr>
<td>last material</td>
<td>31</td>
<td>22</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>663.6</td>
<td>292.8</td>
<td>264.0</td>
<td>261.8</td>
</tr>
<tr>
<td>B1</td>
<td>1990.8</td>
<td>284.4</td>
<td>284.4</td>
<td>284.4</td>
</tr>
<tr>
<td>B2</td>
<td>1080.0</td>
<td>870.0</td>
<td>870.0</td>
<td>870.0</td>
</tr>
<tr>
<td>B3</td>
<td>176.4</td>
<td>48.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B TOT</td>
<td>1990.8</td>
<td>1364.4</td>
<td>1330.8</td>
<td>1471.4</td>
</tr>
</tbody>
</table>

% Reduction

0 55.8 60.2 60.6

Minimum Weight

<table>
<thead>
<tr>
<th>No. of layers</th>
<th>one</th>
<th>two</th>
</tr>
</thead>
<tbody>
<tr>
<td>last material</td>
<td>37</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>638.4</td>
<td>566.8</td>
</tr>
<tr>
<td>B1</td>
<td>1915.2</td>
<td>1684.5</td>
</tr>
<tr>
<td>B2</td>
<td>106.3</td>
<td></td>
</tr>
<tr>
<td>B TOT</td>
<td>1915.2</td>
<td>1790.8</td>
</tr>
</tbody>
</table>

% Reduction

0 11.0

Minimum Volume

<table>
<thead>
<tr>
<th>No. of layers</th>
<th>one</th>
<th>two</th>
<th>three</th>
<th>four</th>
</tr>
</thead>
<tbody>
<tr>
<td>last material</td>
<td>30</td>
<td>11</td>
<td>15</td>
<td>42</td>
</tr>
<tr>
<td>D</td>
<td>108.4</td>
<td>99.8</td>
<td>98.6</td>
<td>98.4</td>
</tr>
<tr>
<td>B1</td>
<td>1300.3</td>
<td>1083.6</td>
<td>1083.6</td>
<td>1083.6</td>
</tr>
<tr>
<td>B2</td>
<td>113.6</td>
<td>32.4</td>
<td>32.4</td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>66.6</td>
<td>48.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B TOT</td>
<td>1300.3</td>
<td>1197.0</td>
<td>1182.6</td>
<td>1180.8</td>
</tr>
</tbody>
</table>

% Reduction

0 26 17 17

NOTE:
1. Material data from Fig. 5.
2. Surface temperatures 2200° F and 100° F

FIG. 9 - FLAT WALL PROPORTIONALITY CONSTANTS
and 100°F. The material array shown in Fig. 5 was used for the computer run that resulted in Fig. 9. Proportionality constants are given for minimum cost and volume for walls of one through four layers and minimum weight walls of one and two layers. The B values with number subscripts are for calculating individual layer thicknesses. The last row of data under each optimization is the per cent saving with respect to the single layer minimized parameter.

When the computer results are to be used as part of a more complex study, graphical presentations may be convenient. It is noted that any of the relationships involving D and B graph as a straight line on logarithmic graph paper. Figure 10 is a sample logarithmic graph showing the minimum cost per unit area versus heat flow rate per unit area for 1, 2, and 3 layer walls. The D constants of the walls were taken from Fig. 9.

B. CYLINDRICAL WALL PROGRAM

1. Input

Figure 11 describes the data cards required with the cylindrical program. The data pack is placed at the end of the program deck. With the exception of the given-conditions cards, the cylindrical wall data pack is identical to the flat wall data pack. Cards which are identical are used in exactly the same way, and the explanations given for the flat wall program may be applied. It is noted that the same set of material array cards may be run with either program.

Each cylindrical given-conditions card specifies, in the order shown on the card, the following:
NOTES:
1) Surface temperatures 2200°F and 100°F.
2) Material Array of Fig. 5.

FIG. 10 - FLAT WALL MINIMUM COST OPTIMIZATION
FIG. 11 - CYLINDRICAL WALL DATA CARDS
1 - The temperature at the internal hot surface of the insulation wall.

2 - The temperature of cold fluid in contact with the external surface of the insulation wall.

3 - The heat flow rate through the insulation wall.

4 - The internal radius of the insulation wall.

5 - The length of the cylinder.

6 - The convective film coefficient at the external surface.

As many given conditions-cards as desired may be used during a single computer run.

2. Output

The form of the cylindrical program output is similar to the form used for the flat program. The material array output format is the same for both programs, and Fig. 5 is an example. Again, material array output is a user option.

As with the flat wall program, problem statements may be used to request the solutions to anyone or all three of the optimization options. A sample three option problem statement is shown in Fig. 12. The order in which the solutions are printed is the same as was described for the flat program; but, the format is slightly different. Figure 13 shows a portion of a three option solution set output.

Each solution output presents: the number of layers in the wall; the minimum cost, weight or volume of the wall; the design data; and the materials data. The first three columns of data specify the wall design. The material number refers to the location of the layer material in the
HEAT TRANSFER RATE IN BTU/HR (Q) = 1000.0
LENGTH OF CYLINDER IN FT. (L) = 1.000
RADIUS OF CYLINDER IN FT. (RIN) = 1.000
SURFACE CONDUCTANCE IN BTU/HR-FT. SQ.-F. (H) = 5.000
SURFACE TEMPERATURE OF CYLINDER DEG. F (TH) = 2200.0
FLUID TEMPERATURE IN DEG. F (TC) = 100.0
NUMBER OF MATERIALS TO BE EVALUATED (N) = 47
MAXIMUM NUMBER OF LAYERS TO BE USED (NL) = 4

FIND:
THE LOWEST COST WALL
THE LOWEST WEIGHT WALL
THE LEAST VOLUME WALL

FIG. 12 - CYLINDRICAL WALL PROBLEM STATEMENT
THE MINIMUM COST 1 LAYER WALL
HAS A COST OF 0.873E+02 DOLLARS

<table>
<thead>
<tr>
<th>MATERIAL NO.</th>
<th>LARGE RADIUS OF LAYER FT.</th>
<th>TEMP. AT LARGE RADIUS DEG. F</th>
<th>$/(CU.-FT.)</th>
<th>LB./(CU.-FT.)</th>
<th>DENSITY</th>
<th>CONDUCTIVITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>2.82011</td>
<td>111.3</td>
<td>4.000</td>
<td>4.00</td>
<td></td>
<td>0.07900</td>
</tr>
</tbody>
</table>

THE MINIMUM WEIGHT 1 LAYER WALL
HAS A TOTAL WEIGHT OF 0.797E+02 POUNDS

<table>
<thead>
<tr>
<th>MATERIAL NO.</th>
<th>LARGE RADIUS OF LAYER FT.</th>
<th>TEMP. AT LARGE RADIUS DEG. F</th>
<th>$/(CU.-FT.)</th>
<th>LB./(CU.-FT.)</th>
<th>DENSITY</th>
<th>CONDUCTIVITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>2.71065</td>
<td>111.7</td>
<td>9.600</td>
<td>4.00</td>
<td></td>
<td>0.07600</td>
</tr>
</tbody>
</table>

THE MINIMUM RADIUS 1 LAYER WALL
HAS A TOTAL VOLUME OF 0.898E+01 CUBIC FEET

<table>
<thead>
<tr>
<th>MATERIAL NO.</th>
<th>LARGE RADIUS OF LAYER FT.</th>
<th>TEMP. AT LARGE RADIUS DEG. F</th>
<th>$/(CU.-FT.)</th>
<th>LB./(CU.-FT.)</th>
<th>DENSITY</th>
<th>CONDUCTIVITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>1.96520</td>
<td>116.2</td>
<td>28.200</td>
<td>24.00</td>
<td></td>
<td>0.05160</td>
</tr>
</tbody>
</table>

THE MINIMUM COST 2 LAYER WALL
HAS A COST OF 0.236E+02 DOLLARS

<table>
<thead>
<tr>
<th>MATERIAL NO.</th>
<th>LARGE RADIUS OF LAYER FT.</th>
<th>TEMP. AT LARGE RADIUS DEG. F</th>
<th>$/(CU.-FT.)</th>
<th>LB./(CU.-FT.)</th>
<th>DENSITY</th>
<th>CONDUCTIVITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>1.16048</td>
<td></td>
<td>4.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>2.03278</td>
<td></td>
<td>4.000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIG. 13 - CYLINDRICAL WALL MULTI-OPTION SOLUTION OUTPUT
material array. The large radius of each layer is given in feet. The small radius of the first layer is given in the problem statement. The third column of data lists the temperatures at the large radii of the layers. The temperature at the small radius of the first layer is given in the problem statement. The temperature drop across the fluid film may be found by subtracting the fluid temperature of the problem statement from the external surface temperature of the external layer. The maximum allowable operating temperature of a layer is equal to the large radius temperature of the previous layer. The three right hand columns are a repeat of material array data. The program has provisions for the rejection of unrealistic problems. The statement "NO SOLUTION" is printed if the material array does not contain materials with maximum allowable operating temperatures greater than the hot temperature of the problem statement. When heat convection from the internal surface of the wall is equal to or less than the specified heat flow rate, the statement "NO INSULATION IS REQUIRED. HEAT CONVECTION FROM THE CYLINDER IS (the value in BTU/HR.)" is printed.

If the external radius of the optimum single layer wall is found to be excessively large, the statement "THE ALLOWED HEAT FLOW RATE IS TOO SMALL" is printed. The judgment is set at a value of XX=7.0 in the large radius equation, i.e.,

$$RBIG = \frac{(EXP(XX) \times RSML + RSML)}{2.0},$$

where $XX=6.28 \times CON \times L \times DT/Q$.

This judgment may be changed by substituting a value different than 7.0 in the statements on lines 68 and 99 of the program listing (See Appendix II).
The program contains an abort provision in the event that the Newton's iteration technique fails to converge on a large radius value within 50 iterations. In this event the statement "PROGRAM STOPPED ---50 ITERATIONS ON RADIUS" is printed. This abort condition has not occurred to this time.

When a series of problems, which are similar except for the heat flow rate, are solved, the material selected for a particular layer may change as the heat flow rate changes. This condition can result from round off errors in the calculated values of two radii of a layer and/or from the finite difference check on the convergence of the Newton's iteration technique. When the true layer thickness is very small, the computer may, in error, calculate a negative layer thickness. A program check (line 117 of the listing) rejects zero and negative layer thicknesses. Since layer thicknesses increase as the heat flow rate decreases, layer materials which were rejected at high flow rates are used at lower flow rates.

3. Solution Evaluation

Inspection of the cylindrical wall parameter equation (4), shows that the parameter being minimized is directly proportional to the length of the cylinder. Other simple algebraic relationships between variables are not immediately apparent; however, relationships may be shown with tables and graphs. The required data can be easily obtained by using the computer program.

The computer program was used to determine the effect of changing the amount of heat flow rate upon the design of a cylindrical wall with the otherwise constant set of given conditions shown in Fig. 12. Heat
flow rate inputs of 1000, 1150, 1500, 2000, 3000, 4000, 6000, and 10000 BTU/HR. were used. The data taken from the computer runs are tabulated in Appendix III. Trial graphs of the program results were made on linear, logarithmic, and semilogarithmic coordinate paper. Semilogarithmic coordinates were found to be the best means of demonstrating the effects of heat flow rate. The values of the variables of interest may be read on linear scales while the logarithmic scale allows a large range of heat flow rate to be covered.

Semilogarithmic graphs of the results of the cost, weight, and volume optimizations are shown in Fig's. 14, 15 and 16 respectively. Each figure has four graphs. Starting from the top, the first graph shows minimum cost, weight, or volume. The second graph shows the percent savings that results from the use of a multi-layer wall in the place of a single layer wall. The next graph shows the external surface temperatures of the walls, and the last graph shows the external radii of the walls. Each curve, shown on a graph, is for the optimum wall with the number of layers specified by the callout. Curves are not shown for walls for which the data falls coincident upon the curves of walls of a lesser number of layers.

Cost optimization program results were printed for 1, 2, 3, and 4 layer walls for heat flow rates from 1,000 to 4,000 BTU/HR., and for 1 and 2 layer walls from 1,000 to 10,000 BTU/HR. Apparently the true thicknesses of the third and fourth layers are so small at high heat flow rates that they were calculated as negative values and were rejected. No four layer wall curves are shown on Fig. 14 because the data was near coincident with 3 layer wall data, and for the same
NOTE: Each curve is for the optimum wall of the number of layers specified by its callout.

FIG. 14 - CYLINDRICAL WALL-MINIMUM COST OPTIMIZATION
NOTE: Each curve is for the optimum wall of the number of layers specified by its callout.

FIG. 15 - CYLINDRICAL WALL-MINIMUM WEIGHT OPTIMIZATION
NOTE: Each curve is for the optimum wall of the number of layers specified by its callout.

FIG. 16 - CYLINDRICAL WALL-VOLUME OPTIMIZATION
Results such as those shown in Fig. 14 can be used to find the minimum material cost for walls of different numbers of layers as a function of heat flow rate. This material cost data can be used in conjunction with other cost data as part of more complex cost studies. For example, the most economical insulation configurations for the plumbing in a power plant could be determined using computer material cost results in conjunction with data pertaining to installation, thermal energy, and depreciation costs. Results as shown in Fig. 14 might also be used to find the minimum overall cost of reducing the external surface temperature of pipe insulation to a specific value. For example, for the given conditions resulting in Fig. 14, suppose it is desired to reduce the external surface temperature to 200°F at minimum cost. In this case the temperature graph is entered at 200°F and it is found that single and double layer walls will allow about 4,000 BTU/HR. and 3600 BTU/HR. of heat flow rates respectively. Entering the cost graph at 4,000 and 3,600 BTU/HR., the material costs of one and two layer walls are found to be approximately 8 and 4 dollars per running foot respectively. The choice between the one and two layer configuration would then be made upon the basis of installation labor cost. If more accurate values of material costs were desired, additional computer runs could be made using fine increments of heat flow rate around 4,000 and 3,600 BTU/HR. These results could then be plotted as cost versus temperature on linear coordinates.

Weight optimization results were printed for the single layer wall for the full range of heat flow rate inputs. Two layer results were
obtained for flow rates from 1000 to 3000 BTU/HR. No three or four layer results were printed. The external surface temperatures for single and double layer walls were within one degree of each other; therefore, only the single layer temperature curve is shown in Fig. 15. Minimum weight data such as that presented in Fig. 15 can be used to solve directly for the minimum weight wall of one or two layers for a specific heat flow rate. The computer results might also be used as part of more complex studies. For example, an aerospace application might require a trade-off-study to minimize overall weight penalty due to heat loss and material weight.

The minimum insulation weight required to reduce the external wall surface temperature to a desired value can be determined directly. For example, Fig. 15 shows that a desired surface temperature of 200°F is obtained at 4000 BTU/HR., and that the minimum single layer insulation weight is approximately 7.7 pounds per running foot. In the transportation industry, studies might be performed to determine the effect of insulation weight upon fuel cost.

Minimum volume results were output for the single and the two layer walls from 1000 to 10,000 BTU/HR. The second layer of the two layer wall had material changes at 4,000 and 10,000 BTU/HR. Three and four layer results were not printed for the complete range of heat flow rates and a number of material changes occurred. Only one and two layer results are shown in Fig. 16. The two layer curves are ended at 3000 BTU/HR. because of material changes at the higher heat flow rates. One and two layer temperature data were within one degree. Three and four
layer data is near coincident upon the two layer data.

Minimum volume computer results may be used in analyses similar to those described for cost and weight. Minimum volume applications might arise in the aerospace and transportation industries or from consumer products industry where sales appeal can be improved by reducing volume.
DISCUSSION OF RESULTS

The initial objectives of this project were to devise methods for determining the minimum cost, weight, or volume for flat and cylindrical composite insulation walls and to write computer programs to accomplish these analyses. These objectives have been fulfilled, and the previous section serves as a guide in the use of the two resulting computer programs. The flat and cylindrical shapes were selected for analyses because of their frequent application.

Insulation data obtained by a survey of manufacturers was used to give a sense of reality to the results which were obtained to demonstrate the function of the computer programs. However, the present compilation of data is not considered to be sufficiently complete or detailed for effective use of the computer programs. The establishment of consistent and detailed methods for collecting, presenting, and filing data is recommended. Materials which are not normally considered to be insulations should not be overlooked. Material environmental limitations other than temperature should also be noted.

In addition to obtaining a current and comprehensive collection of material data, the user of the programs must exercise judgment to assure the accuracy of his results. The need for judgment stems from simplifying assumptions basic to the analyses and can be reduced by increasing the complexity of the computer programs. Inspection of the basic assumptions indicates that the most gain for the effort expended will result from changing the material conductivity assumption.
One implied assumption is that the unit volume cost of a material is constant. Since unit costs change with time, quantity, and configuration the constant unit cost assumption requires the user to know current costs and to have some forehand knowledge of the material quantity requirements by his problem statement.

It is felt that a change from the present cost assumption is not justified because different manufacturers use different methods for cost adjustment and because price breaks usually occur at fixed quantities.

Because the negligible contact resistance assumption yields conservative results, and because of the uncertainty and complexity involved when contact resistance is considered, it is felt that a change from the present assumption should have low priority. The cylindrical program problem statement requires the input of a fixed value for the convective film coefficient. This restriction requires initial judgment in the selection of a coefficient value and an evaluation of results to verify the selection. The cylindrical program can be modified to make the film coefficient a function of radius; but it is felt that this change should take second priority to changing the material conductivity assumption for both programs.

It is now assumed that the conductivity of each material is a constant. When this assumption is not true for the materials used with the program, the user must inspect conductivity data and select mean input values in keeping with his problem statement. He must also inspect the program results to verify his selections. This need for judgment can be greatly reduced by assuming that conductivity is a linear function of temperature.
The limitation of the constant conductivity assumption became apparent during inspection of material data collected from manufacturers. The conductivity of many materials varies greatly with temperature. In a number of cases manufacturers provided both summary and detail material data. The detail data presented conductivity versus temperature data. The summary data gave a specific value of conductivity. Usually the specific value was the mean conductivity effective between the maximum operating temperature and room temperature. Such a value is usable for single layer flat walls, but is not suitable for the analysis of composite walls. It is felt that the needs of the computer programs can best be met by the simple expedient of linearizing variable conductivity data. In cases where only one value of conductivity was given by the manufacturer, it was not certain whether the value was a constant or a mean, or whether only a limited amount of testing had been performed. When possible, these uncertainties should be eliminated.

A change to the linear conductivity assumption will require two changes to the material data array cards. The card item location now used for the constant conductivity input can be used to specify the value of conductivity at the hot temperature of the material. A data item specifying the rate of change of conductivity with temperature must be added to the card. The program logic must be changed in two ways. Firstly the conductivity of each candidate layer material must be calculated and substituted into the optimum value equation. Secondly, an optimum previous layer material must be selected along with each candidate layer material. The second requirement results from the fact that the hot temperature of a new layer becomes the cold temperature of the previous layer and thus changes the differential temperature upon which
previous layer's conductivity was based.

The computer programs were designed for applications with heat flow from a hot source to a cold sink. If the candidate materials will not be damaged by exposure to the cold temperature of the problem statement, the programs may be used for problems where the heat flow into a cold sink is to be limited. For the cylindrical wall, the cold source must be on the external diameter of the insulation wall. Cold sink programs based upon the existing program can be written in which the cold temperature limitations of the materials are considered. When and if cold sink programs are written, spherical insulation should be considered, as cryogenic storage tanks are often spherical.
CONCLUSIONS AND RECOMMENDATIONS

The objectives of this project have been accomplished. Computer programs for optimizing flat and cylindrical composite insulation walls have been written, and their use has been demonstrated. The quality of results depends only upon the accuracy and completeness of the input material data.

It is suggested that the usefulness of the computer programs be increased by performing the two tasks that follow:
1. Establish detail procedures for collecting and filing material data.
2. Modify both programs to allow for linear change of conductivity with temperature.
3. Modify the cylindrical program to allow the film coefficient to change as a function of radius.
4. Write new programs for cryogenic applications.
REFERENCES

APPENDIX I

LISTING OF FLAT WALL COMPUTER PROGRAM
DIMENSION T(50), AK(50), SU(50), RO(50), C(50), M(50), AR(50)

DIMENSION T(50), AK(50), C(50), SU(50), X(50), AS(50)

WRITE (10, 1026) T(1), AK(1), SU(1), RO(1), I=1, N
WRITE (13, 1020) T(1), T(2), T(3), T(4)
WRITE (13, 1021) A, G, TH, TC, N, NL
GO TO (72, 72, 72, 74, 1, NPROG)
GO TO 2
WRITE (3, 1023)
GO TO 2
WRITE (3, 1024)
GO TO 2
WRITE (3, 1024)
CONTINUE
WRITE (3, 1024)
DO 77 POP(1), I=1, N
DATA I(FORBID),4,7,8
GO TO 6
WRITE (3, 1023)
GO TO 2
WRITE (3, 1024)
CONTINUE
GO TO (4, 7, 8, POP, 4, 7, 8, POP)
WRITE (3, 1024)
CONTINUE
GO TO 2

/
ESTABLISHING INITIAL VALUES FOR OPTIMIZATION:

START OF OPTIMIZATION - THE LOOP DO 300 J=1,NL, DETERMINES IF N+1 LAYERS ARE OPTIMUM.

THE INNER LOOP DO 100 I=1,N, SELECTS THE MTL FOR THE HOT LAYER

STATEMENT 888 INDICATES THAT NO MTL IN THE ARRAY WILL OPERATE AT THE HOT TEMP. OF THE PROBLEM STATEMENT.

THE OUTER LOOP DO 200 I=1,N, SELECTS THE OPTIMUM MTL. FOR ALL OTHER LAYERS.

IF NO MTL IN THE ARRAY CAN BE USED FOR A NEXT LAYER, THE OPTIMIZATION IS COMPLETED FOR J LESS THAN NL AND THE J AND I LOOPS ARE EXITED TO STATEMENT 400.

AKJ=AK(I)
CJ=C(I)
TJ=T(I)

SUM=SUM+AK(J)-CC(J)*TJ+AKJ*CJ+TJ=AKJ*CJ+T

SUMG=SUMP
W(J)=NJ
AKJ=AKJ
CC(J)=CJ
85 TT(J)=TJ
86 JJ=JJ
87 ASJ(J)=SU(J)
88 SUM(JJ)=SUM(JJ)+SU(JJ)
89 IF(SUM(JJ).GT.SUMCJ)GO TO 400
90 30 CONTINUE
91 260 CONTINUE
92 222 TI=TT(JJ)
93 TE(SUM(JJ)=SUMCJ)41,400,400
94 41 SUMCJ=SUMCJ+1
95 SUMC=SUMC+1
96 RET=SUM(JJ)+AAK(JJ)*CC(JJ)*TC
97 NODE=NODF+1
100 300 END OF OPTIMIZATION
101 400 CONTINUE
102 400 CONTINUE
103 HEAVY POINTS END
104 SELECTION OF PRINT OUT OPTION FOR PROG=NXX=1,2,3, OR 3
105 GO TO (31,32,33),NXX
106 31 WRITE (3,1006)NOOFW,P
107 GO TO 34
108 32 WRITE (3,1008)NOOFW,P
109 GO TO 34
110 34 CONTINUE
111 TT(J)=TH
112 WRITE (3,1009)
113 DO 500 J=1,NOOFW
114 IF (J-NOOFW)52,51,51
115 51 DELT=TT(J)-TC
116 GO TO 53
117 52 DELT=TT(J)-TT(J+1)
118 53 CONTINUE
119 WRITE (3,1006) J,J,J,J
120 PRINT OUT OPTIMUM LAYER DATA.
121 WRITE (3,1009)X(J),Y(J),Z(J),TT(J),T(MJ),SU(J),ARO(J),AAK(J)
122 500 CONTINUE
123 IF(NPSOG.GE.4.AND.NXX.LT.3)GOTO 61
124 60 GO TO 63
125 61 NXX=NXX+1
126 62 GO TO 3
127 63 CONTINUE
128 7676 CONTINUE
129 7678 GO TO 53
130 7678 STOP
DATA
APPENDIX II

LISTING OF CYLINDRICAL WALL COMPUTER PROGRAM
DIMENSION T(50), AK(50), SU(50), RO(50), C(50), M(50), AR0(50), PJ(50)

REAL

5. READ (1, 1000) N

C N=NUMBER OF CARDS IN THE MATERIAL ARRAY (ONE CARD PER MATERIAL)

5. READ (1, 1000) (T(I), AK(I), SU(I), RO(I), I=1,N)

C T(I)=MAXIMUM ALLOWED TEMP. OF MATERIAL (F)

C AK(I)=CONDUCTIVITY OF MATERIAL (BTU/(HR-FT-F))

C SU(I)=MTL. COST/VOLUME ($/(CU.-FT.)

C RO(I)=MTL. DENSITY (LB./(CU.-FT.))

6. READ (1, 1000) NL, N1P, NPROG

C NL=MAXIMUM NUMBER OF LAYERS TO BE ALLOWED IN THE FINAL RESULT

C N1P=INPUT A 2 FOR PRINT OUT OF MTL. ARRAY. INPUT A 1 FOR PRINT NO.

C NPROG: INPUT: 1, 2, 3, 4, FOR_MIN. COST_MIN. WT., MIN. THICKNESS, ALL 3.

7. IF(N1P,GE,2) GO TO 65

8. GO TO 67

65 WRITE (3, 1025)

C WRITE: MTL. ARRAY IF N1P=1.

WRITE(3, 1026) (T(I), AK(I), SU(I), RO(I), I=1,N)

C INPUT PROBLEM STATEMENT

6666 READ (1, 1001) TH, TC, O, RIN, L, H

C TH=CYLINDER TEMPERATURE (F)

C TC=OUTSIDE FLUID TEMPERATURE (F)

C O=HEAT FLOW RATE THRU WALL (BTU/HR)

C RIN=CYLINDER RADIUS

C L=CYLINDER LENGTH IN (FT)

C H=CONVECTION FILM COEFFICIENT (BTU/(FT-SQ.-F)

14 WRITE (3, 1020)

C WRITE PROBLEM STATEMENT

WRITE(3, 1021) (L, RIN, H, TH, TC)

WRITE (3, 2021) N, NL

16 GO TO (71, 72, 73, 74), NPROG

17 71 WRITE (3, 1022)

18 GO TO 2

19 72 WRITE (3, 1023)

20 GO TO 2

21 73 WRITE (3, 1024)

22 GO TO 2

23 74 WRITE (3, 1022)

24 WRITE (3, 1023)

25 WRITE (3, 1024)

26 WRITE (3, 1025)

2 CONTINUE

27 IF(OH, GE, 0) GO TO 997

28 GO TO 896

29 997 WRITE (3, 1030) OH

30 GO TO 896

31 996 CONTINUE

32 NLIND-1

33 34 NLIND-1, N1P

35 IF(NPROG-4)4, 3, 3

36 C SELECT OPTIMIZATION OPTION I.E., NPROG=1, 2, 3, OR 4
38 3 NXX=1
39 4 GO TO 5
40 5 CONTINUE
41 6 CONTINUE
42 7 DO 77 I=1,N
43 8 C(I)=RO(I)
44 9 CONTINUE
45 10 DUMMY VARIABLE DEPENDING UPON NPROG=NXX=1,2,OR3
46 11 CONTINUE
47 12 DO 77 I=1,N
48 13 C(I)=RO(I)
49 14 CONTINUE
50 15 SUMCJ=10.0E0
51 16 CONTINUE
52 17 DO 88 I=1,N
53 18 C(I)=1.0E0
54 19 CONTINUE
55 20 DUMMY VARIABLE DEPENDING UPON NPROG=NXX=1,2,OR3
56 21 CONTINUE
57 22 START OF OPTIMIZATION - THE LOOP DO 300 J=1,NL,DETERMINES
58 23 IF N OR N+1 LAYERS ARE OPTIMUM.
59 24 DO 300 J=1,NL
60 25 IF(J-1)10,10,20
61 26 CM=10.0E0
62 27 XX=-20
63 28 C CONTINUOUSLY INITIAL VALUES FOR OPTIMIZATION:
64 29 SUMCJ=10.0E0
65 30 CONTINUE
66 31 START OF OPTIMIZATION - THE LOOP DO 300 J=1,NL,DETERMINES
67 32 IF N OR N+1 LAYERS ARE OPTIMUM.
68 33 DO 300 J=1,NL
69 34 IF(J-1)10,10,20
70 35 CM=10.0E0
71 36 XX=-20
72 37 C CONTINUOUSLY INITIAL VALUES FOR OPTIMIZATION:
73 38 SUMCJ=10.0E0
74 39 C CONTINUE
75 40 START OF OPTIMIZATION - THE LOOP DO 300 J=1,NL,DETERMINES
76 41 IF N OR N+1 LAYERS ARE OPTIMUM.
77 42 DO 300 J=1,NL
78 43 IF(J-1)10,10,20
79 44 CM=10.0E0
80 45 XX=-20
81 46 C CONTINUOUSLY INITIAL VALUES FOR OPTIMIZATION:
82 47 SUMCJ=10.0E0
83 48 C CONTINUE
84 49 START OF OPTIMIZATION - THE LOOP DO 300 J=1,NL,DETERMINES
85 50 IF N OR N+1 LAYERS ARE OPTIMUM.
86 51 DO 300 J=1,NL
87 52 IF(J-1)10,10,20
88 53 CM=10.0E0
89 54 XX=-20
90 55 C CONTINUOUSLY INITIAL VALUES FOR OPTIMIZATION:
SUM(J)=SUM(I)
TT(J-1)=TT(1)
RJ(J)=RJ(1)

IF(J(J)=0) GO TO 200,400,400
GO TO 200

CONTINUE

IF(SUM(J(J))=SUMC(J)) 41,400,400
SUMC=SUM(J(J))
TT(J)=TT(1)
SUMC=SUM(J(J))

END OF OPTIMIZATION

CALCULATION OF OPTIMUM VALUE (COST, DENSITY, OR THICKNESS)

C

SELECTION OF PRINT OUT OPTION FOR PRG=NXX=1,2,3,4

WRITE (3,1007) NNOFW,P

160 GO TO 34

NOTE---THE PROGRAM CALCULATES AND PRINTS OUT ALL OPTIMUM

CONFIGURATIONS FROM I TO NL LAYERS. HOWEVER, IF AN OPTIMUM

DOES NOT EXIST THE LAST NUMBER OF LAYERS CALCULATED, THIS

LAST CALCULATION WILL BE PRINTED OUT UNTIL NL PRINT OUTS HAVE BEEN

MADE.

WRITE (3,1066) NNOFW,P

163 GO TO 34

WRITE (3,1068) NNOFW,P

164 CONTINUE

WRITE (3,1069)

DO 500 J=1,NNOFW

166 WRITE (3,1063) M(J),RJ(J),TT(J),ASU(J),AR(J),AAK(J)

500 CONTINUE

IF(NPROG. EQ.4) AND NXX.LT.3) GOTO 61

170 GO TO 63

171 NXX=NXX+1

172 GO TO 5

173 WRITE (3,1004)

174 GO TO 63

175 WRITE (3,2222)

176 CONTINUE

177 WRITE (3,1031)

178 CONTINUE

179 CONTINUE

180 CONTINUE

181 CONTINUE

182 STOP

183 FORMAT (7110)

184 FORMAT(*MULTI-LAYER*/*4AX,*COMPOSITE WALL CONFIGURATION*/)

185 FORMAT(*MATERIAL/AX,*INTL. TEMP.,/10X,*CONDUCTIVITY*,/11X,*COST*,

212X,*DENSITY*/17X,*NO.*/RX,*LIM. DEC., F*/7X,

3*RJ/(HR=FT=FL),/15X,(HR=FT=FL),/7X,*LR./(CU.-FT.)*/)
DATA

1031 FORMAT (43X,44X,18X)

1032 FORMAT (43X,44X,18X)

1033 FORMAT (43X,44X,18X)

1034 FORMAT (43X,44X,18X)

1035 FORMAT (43X,44X,18X)

1036 FORMAT (43X,44X,18X)

1037 FORMAT (43X,44X,18X)

1038 FORMAT (43X,44X,18X)

1039 FORMAT (43X,44X,18X)

1040 FORMAT (43X,44X,18X)

1041 FORMAT (43X,44X,18X)

1042 FORMAT (43X,44X,18X)

1043 FORMAT (43X,44X,18X)

1044 FORMAT (43X,44X,18X)

1045 FORMAT (43X,44X,18X)

1046 FORMAT (43X,44X,18X)

1047 FORMAT (43X,44X,18X)

1048 FORMAT (43X,44X,18X)

1049 FORMAT (43X,44X,18X)

1050 FORMAT (43X,44X,18X)

1051 FORMAT (43X,44X,18X)

1052 FORMAT (43X,44X,18X)

1053 FORMAT (43X,44X,18X)

1054 FORMAT (43X,44X,18X)

1055 FORMAT (43X,44X,18X)

1056 FORMAT (43X,44X,18X)

1057 FORMAT (43X,44X,18X)

1058 FORMAT (43X,44X,18X)

1059 FORMAT (43X,44X,18X)

1060 FORMAT (43X,44X,18X)

1061 FORMAT (43X,44X,18X)

1062 FORMAT (43X,44X,18X)

1063 FORMAT (43X,44X,18X)

1064 FORMAT (43X,44X,18X)

1065 FORMAT (43X,44X,18X)

1066 FORMAT (43X,44X,18X)

1067 FORMAT (43X,44X,18X)

1068 FORMAT (43X,44X,18X)

1069 FORMAT (43X,44X,18X)

1070 FORMAT (43X,44X,18X)

1071 FORMAT (43X,44X,18X)

1072 FORMAT (43X,44X,18X)

1073 FORMAT (43X,44X,18X)

1074 FORMAT (43X,44X,18X)

1075 FORMAT (43X,44X,18X)

1076 FORMAT (43X,44X,18X)

1077 FORMAT (43X,44X,18X)

1078 FORMAT (43X,44X,18X)

1079 FORMAT (43X,44X,18X)

1080 FORMAT (43X,44X,18X)

1081 FORMAT (43X,44X,18X)

1082 FORMAT (43X,44X,18X)

1083 FORMAT (43X,44X,18X)

1084 FORMAT (43X,44X,18X)

1085 FORMAT (43X,44X,18X)

1086 FORMAT (43X,44X,18X)

1087 FORMAT (43X,44X,18X)

1088 FORMAT (43X,44X,18X)

1089 FORMAT (43X,44X,18X)

1090 FORMAT (43X,44X,18X)

1091 FORMAT (43X,44X,18X)

1092 FORMAT (43X,44X,18X)

1093 FORMAT (43X,44X,18X)

1094 FORMAT (43X,44X,18X)

1095 FORMAT (43X,44X,18X)

1096 FORMAT (43X,44X,18X)

1097 FORMAT (43X,44X,18X)

1098 FORMAT (43X,44X,18X)

1099 FORMAT (43X,44X,18X)

1100 FORMAT (43X,44X,18X)

1101 FORMAT (43X,44X,18X)
APPENDIX III

TABULATION OF CYLINDRICAL PROGRAM RESULTS
RESULTS OF COST OPTIMIZATION

CYLINDRICAL WALL

<table>
<thead>
<tr>
<th>Q</th>
<th>cost</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>87.33</td>
<td>2.820</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>111.7</td>
</tr>
<tr>
<td>1500</td>
<td>93.42</td>
<td>2.460</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>114.9</td>
</tr>
<tr>
<td>2500</td>
<td>174.65</td>
<td>1.658</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>124.0</td>
</tr>
<tr>
<td>3000</td>
<td>12.04</td>
<td>1.500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>138.2</td>
</tr>
<tr>
<td>4000</td>
<td>9.00</td>
<td>1.222</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>168.3</td>
</tr>
<tr>
<td>6000</td>
<td>4.75</td>
<td>1.176</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>195.4</td>
</tr>
<tr>
<td>10000</td>
<td>2.47</td>
<td>1.094</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>262.8</td>
</tr>
</tbody>
</table>

Single Layer Wall

<table>
<thead>
<tr>
<th>Q</th>
<th>cost</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>23.60</td>
<td>1.161</td>
<td>2.033</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1900</td>
</tr>
<tr>
<td>1500</td>
<td>18.43</td>
<td>1.132</td>
<td>1.851</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1900</td>
</tr>
<tr>
<td>2000</td>
<td>12.02</td>
<td>1.094</td>
<td>1.600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1900</td>
</tr>
<tr>
<td>3000</td>
<td>7.91</td>
<td>1.077</td>
<td>1.919</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1900</td>
</tr>
<tr>
<td>4000</td>
<td>4.63</td>
<td>1.051</td>
<td>1.259</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1900</td>
</tr>
<tr>
<td>6000</td>
<td>3.24</td>
<td>1.238</td>
<td>1.186</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>207.5</td>
</tr>
<tr>
<td>10000</td>
<td>1.95</td>
<td>1.025</td>
<td>1.116</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>211.2</td>
</tr>
</tbody>
</table>

Two Layer Wall

<table>
<thead>
<tr>
<th>Q</th>
<th>cost</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>19.52</td>
<td>1.161</td>
<td>1.630</td>
<td>1.928</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1900</td>
</tr>
<tr>
<td>1500</td>
<td>15.48</td>
<td>1.132</td>
<td>1.651</td>
<td>1.824</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1900</td>
</tr>
<tr>
<td>2000</td>
<td>10.34</td>
<td>1.094</td>
<td>1.496</td>
<td>1.583</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1900</td>
</tr>
<tr>
<td>3000</td>
<td>6.96</td>
<td>1.077</td>
<td>1.353</td>
<td>1.402</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1900</td>
</tr>
<tr>
<td>4000</td>
<td>4.17</td>
<td>1.051</td>
<td>1.228</td>
<td>1.253</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1900</td>
</tr>
<tr>
<td>6000</td>
<td>2.96</td>
<td>1.038</td>
<td>1.163</td>
<td>1.182</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1900</td>
</tr>
</tbody>
</table>

Three Layer Wall

<table>
<thead>
<tr>
<th>Q</th>
<th>cost</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>19.20</td>
<td>1.161</td>
<td>1.830</td>
<td>1.877</td>
<td>1.978</td>
<td>1900</td>
<td>450.0</td>
<td>253.2</td>
<td>116.1</td>
</tr>
<tr>
<td>1500</td>
<td>15.26</td>
<td>1.132</td>
<td>1.691</td>
<td>1.729</td>
<td>1.808</td>
<td>1900</td>
<td>450.0</td>
<td>253.2</td>
<td>120.3</td>
</tr>
<tr>
<td>2000</td>
<td>10.22</td>
<td>1.094</td>
<td>1.496</td>
<td>1.521</td>
<td>1.571</td>
<td>1900</td>
<td>450.0</td>
<td>253.2</td>
<td>130.4</td>
</tr>
<tr>
<td>3000</td>
<td>6.99</td>
<td>1.077</td>
<td>1.353</td>
<td>1.370</td>
<td>1.402</td>
<td>1900</td>
<td>450.0</td>
<td>253.2</td>
<td>145.7</td>
</tr>
<tr>
<td>4000</td>
<td>4.14</td>
<td>1.051</td>
<td>1.223</td>
<td>1.234</td>
<td>1.250</td>
<td>1900</td>
<td>450.0</td>
<td>253.2</td>
<td>176.5</td>
</tr>
</tbody>
</table>

Four Layer Wall

<table>
<thead>
<tr>
<th>Q</th>
<th>cost</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>19.00</td>
<td>1.161</td>
<td>1.830</td>
<td>1.877</td>
<td>1.978</td>
<td>1900</td>
<td>450.0</td>
<td>253.2</td>
<td>176.7</td>
</tr>
<tr>
<td>1500</td>
<td>15.11</td>
<td>1.132</td>
<td>1.691</td>
<td>1.729</td>
<td>1.808</td>
<td>1900</td>
<td>450.0</td>
<td>253.2</td>
<td>176.7</td>
</tr>
<tr>
<td>2000</td>
<td>10.22</td>
<td>1.094</td>
<td>1.496</td>
<td>1.521</td>
<td>1.571</td>
<td>1900</td>
<td>450.0</td>
<td>253.2</td>
<td>176.7</td>
</tr>
<tr>
<td>3000</td>
<td>6.89</td>
<td>1.077</td>
<td>1.353</td>
<td>1.370</td>
<td>1.402</td>
<td>1900</td>
<td>450.0</td>
<td>253.2</td>
<td>176.7</td>
</tr>
<tr>
<td>4000</td>
<td>4.14</td>
<td>1.051</td>
<td>1.223</td>
<td>1.234</td>
<td>1.250</td>
<td>1900</td>
<td>450.0</td>
<td>253.2</td>
<td>176.7</td>
</tr>
</tbody>
</table>

Given Conditions:

- L = 10
- H = 5
- TC = 100
- TH = 2200
- N = 47
- NL = 4

MATERIALS:

<table>
<thead>
<tr>
<th>Layer</th>
<th>Material</th>
<th>Q Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31</td>
<td>all</td>
</tr>
<tr>
<td>2</td>
<td>31</td>
<td>all</td>
</tr>
<tr>
<td>3</td>
<td>31</td>
<td>all</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>all</td>
</tr>
</tbody>
</table>
RESULTS OF WEIGHT OPTIMIZATION

CYLINDRICAL WALL

<table>
<thead>
<tr>
<th>Q</th>
<th>Wt.</th>
<th>R1</th>
<th>R2</th>
<th>T1</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(lb.)</td>
<td>(ft)</td>
<td>(ft)</td>
<td>(°F)</td>
<td>(°F)</td>
<td></td>
</tr>
</tbody>
</table>

Single Layer Wall

1000	79.73	2.711	111.7
1500	58.57	2.756	115.4
1500	34.52	1.936	124.7
2000	21.05	1.636	135.9
3000	11.42	1.382	169.2
4000	7.68	1.270	200.3
6000	4.53	1.167	263.8
10000	2.47	1.094	391.1

Two Layer Wall

1000	61.89	2.415	2.546	3.53	112.5
1500	46.95	2.152	2.252	166.3	
1500	28.65	1.800	1.861	125.7	
2000	17.95	1.554	1.591	140.0	
3000	10.14	1.342	1.360	3.53	170.3

Given Conditions: L = 1, H = 5, TC = 100, TH = 2200,

N = 47, NL = 4

MATERIALS: Layer	Material	Q Range
1 | 37 | 11 (1000-2000)
2 | |
RESULTS OF VOLUME OPTIMIZATION

CYLINDRICAL WALL

<table>
<thead>
<tr>
<th>(Q)</th>
<th>Vol. ((\text{ft}^3))</th>
<th>(R_1)</th>
<th>(R_2)</th>
<th>(R_3)</th>
<th>(R_4)</th>
<th>(T_1)</th>
<th>(T_2)</th>
<th>(T_3)</th>
<th>(T_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>8.99</td>
<td>1.965</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td>7.00</td>
<td>1.787</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>6.54</td>
<td>1.564</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>2.97</td>
<td>1.395</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td>1.72</td>
<td>1.244</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td>1.20</td>
<td>1.175</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6000</td>
<td>0.73</td>
<td>1.110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td>0.39</td>
<td>1.090</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Single Layer Wall

<table>
<thead>
<tr>
<th>(Q)</th>
<th>Vol. ((\text{ft}^3))</th>
<th>(R_1)</th>
<th>(R_2)</th>
<th>(R_3)</th>
<th>(R_4)</th>
<th>(T_1)</th>
<th>(T_2)</th>
<th>(T_3)</th>
<th>(T_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>7.78</td>
<td>1.763</td>
<td>1.866</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.50</td>
</tr>
<tr>
<td>1150</td>
<td>6.14</td>
<td>1.637</td>
<td>1.719</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.13</td>
</tr>
<tr>
<td>1500</td>
<td>4.65</td>
<td>1.459</td>
<td>1.513</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13.6</td>
</tr>
<tr>
<td>2000</td>
<td>2.69</td>
<td>1.328</td>
<td>1.362</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14.6</td>
</tr>
<tr>
<td>3000</td>
<td>1.59</td>
<td>1.208</td>
<td>1.227</td>
<td>4.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>177.9</td>
</tr>
<tr>
<td>4000</td>
<td>1.11</td>
<td>1.138</td>
<td>1.164</td>
<td>6.00</td>
<td>209.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6000</td>
<td>0.69</td>
<td>1.080</td>
<td>1.104</td>
<td>6.00</td>
<td>273.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Two Layer Wall

<table>
<thead>
<tr>
<th>(Q)</th>
<th>Vol. ((\text{ft}^3))</th>
<th>(R_1)</th>
<th>(R_2)</th>
<th>(R_3)</th>
<th>(R_4)</th>
<th>(T_1)</th>
<th>(T_2)</th>
<th>(T_3)</th>
<th>(T_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>7.64</td>
<td>1.763</td>
<td>1.793</td>
<td>1.852</td>
<td></td>
<td>450</td>
<td>3.50</td>
<td>117.2</td>
<td></td>
</tr>
<tr>
<td>1150</td>
<td>6.03</td>
<td>1.637</td>
<td>1.662</td>
<td>1.708</td>
<td></td>
<td>121.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>2.97</td>
<td>1.459</td>
<td>1.476</td>
<td>1.506</td>
<td></td>
<td>131.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>2.65</td>
<td>1.378</td>
<td>1.337</td>
<td>1.358</td>
<td>4.50</td>
<td>3.50</td>
<td>178.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td>1.57</td>
<td>1.208</td>
<td>1.215</td>
<td>1.225</td>
<td>6.00</td>
<td>450</td>
<td>209.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td>1.08</td>
<td>1.138</td>
<td>1.148</td>
<td>1.160</td>
<td>6.00</td>
<td>450</td>
<td>209.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Three Layer Wall

<table>
<thead>
<tr>
<th>(Q)</th>
<th>Vol. ((\text{ft}^3))</th>
<th>(R_1)</th>
<th>(R_2)</th>
<th>(R_3)</th>
<th>(R_4)</th>
<th>(T_1)</th>
<th>(T_2)</th>
<th>(T_3)</th>
<th>(T_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>7.62</td>
<td>1.763</td>
<td>1.793</td>
<td>1.839</td>
<td>1.851</td>
<td>450</td>
<td>3.50</td>
<td>117.2</td>
<td></td>
</tr>
<tr>
<td>1150</td>
<td>6.01</td>
<td>1.637</td>
<td>1.662</td>
<td>1.698</td>
<td>1.707</td>
<td>121.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>3.98</td>
<td>1.494</td>
<td>1.476</td>
<td>1.501</td>
<td>1.506</td>
<td>131.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>2.65</td>
<td>1.328</td>
<td>1.339</td>
<td>1.356</td>
<td>1.358</td>
<td>4.50</td>
<td>3.50</td>
<td>131.7</td>
<td></td>
</tr>
</tbody>
</table>

Four Layer Wall

<table>
<thead>
<tr>
<th>(Q)</th>
<th>Vol. ((\text{ft}^3))</th>
<th>(R_1)</th>
<th>(R_2)</th>
<th>(R_3)</th>
<th>(R_4)</th>
<th>(T_1)</th>
<th>(T_2)</th>
<th>(T_3)</th>
<th>(T_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>7.62</td>
<td>1.763</td>
<td>1.793</td>
<td>1.839</td>
<td>1.851</td>
<td>450</td>
<td>3.50</td>
<td>117.2</td>
<td></td>
</tr>
<tr>
<td>1150</td>
<td>6.01</td>
<td>1.637</td>
<td>1.662</td>
<td>1.698</td>
<td>1.707</td>
<td>121.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>3.98</td>
<td>1.494</td>
<td>1.476</td>
<td>1.501</td>
<td>1.506</td>
<td>131.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>2.65</td>
<td>1.328</td>
<td>1.339</td>
<td>1.356</td>
<td>1.358</td>
<td>4.50</td>
<td>3.50</td>
<td>131.7</td>
<td></td>
</tr>
</tbody>
</table>

Given Conditions: \(L = 1, H = 5, TC = 100, TH = 2200 \)
\(N = 47, NL = 4 \)

MATERIALS: Layer Material \(R \) Range

<table>
<thead>
<tr>
<th>Layer</th>
<th>Material</th>
<th>(R) Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>1000 to 10000</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>1000 to 10000</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>4000 to 4000</td>
</tr>
<tr>
<td>4</td>
<td>17</td>
<td>1000 to 3000</td>
</tr>
<tr>
<td>5</td>
<td>17</td>
<td>4000 to 4000</td>
</tr>
<tr>
<td>6</td>
<td>42</td>
<td>1000 to 2000</td>
</tr>
</tbody>
</table>
VITA

The author, William Donald Morath, was born on January 13, 1929, in St. Louis, Missouri. He received his primary and high school education in University City, Missouri, and received a Bachelor of Science Degree in Mechanical Engineering from Purdue University in 1955. Since graduation he has worked as a Mechanical Engineer at Rocketdyne Corp., Marquardt Corp., Vickers Inc., and McDonnell Douglas Corp. He is presently employed as an assistant professor in the Engineering and Mathematics Department of Meramec Community College in Kirkwood, Missouri. He enrolled at the University of Missouri-Rolla, St. Louis Graduate Engineering Center in the fall of 1965, and attended the University of Missouri-Rolla in the summer of 1968.