1950

Efficiency studies of the effect of moisture on the power consumption of mine scrapers

Georges J. Vigier

Follow this and additional works at: http://scholarsmine.mst.edu/masters_theses

Department: Mining and Nuclear Engineering

Recommended Citation

This Thesis - Open Access is brought to you for free and open access by the Student Research & Creative Works at Scholars' Mine. It has been accepted for inclusion in Masters' Theses by an authorized administrator of Scholars' Mine. For more information, please contact weaverjr@mst.edu.
EFFICIENCY STUDIES OF THE EFFECT OF MOISTURE ON
THE POWER CONSUMPTION OF MINE SCRAPERS

BY

GEORGES J. VIGIER

A
THESIS
submitted to the faculty of the
SCHOOL OF MINES AND METALLURGY OF THE UNIVERSITY OF MISSOURI
in partial fulfillment of the work required for the
Degree of
MASTER OF SCIENCE, MINING ENGINEERING
Rolla, Missouri
1950

Approved by

Professor of Mining Engineering
ACKNOWLEDGEMENT

The writer wishes to express all his indebtedness to Dr. J. D. Forrester, Chairman of the Department of Mining Engineering, for his assistance in providing the author with a Research Fellowship without which the completion of this work would not have been possible and for all he did to make this year spent in the United States a very interesting and enriching experience to the author. Special acknowledgement is also made to him for his consultation, and for his suggestions in the preparation of this thesis.
CONTENTS

<table>
<thead>
<tr>
<th>Acknowledgment</th>
<th>ii</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Illustrations</td>
<td>iv</td>
</tr>
<tr>
<td>List of Tables</td>
<td>iv</td>
</tr>
<tr>
<td>List of Graphs</td>
<td>iv</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Review of Literature</td>
<td>2</td>
</tr>
<tr>
<td>History of Scraping</td>
<td>2</td>
</tr>
<tr>
<td>Scraper Operation Data</td>
<td>3</td>
</tr>
<tr>
<td>Motive Power</td>
<td>5</td>
</tr>
<tr>
<td>Scraper Hoists Assemblies</td>
<td>10</td>
</tr>
<tr>
<td>Design of Scrapers</td>
<td>10</td>
</tr>
<tr>
<td>Efficiency of scrapers</td>
<td>12</td>
</tr>
<tr>
<td>Apparatus for Scraper Tests</td>
<td>14</td>
</tr>
<tr>
<td>Equipment Used in Tests</td>
<td>14</td>
</tr>
<tr>
<td>Material Tested</td>
<td>17</td>
</tr>
<tr>
<td>Method of Collecting Data</td>
<td>17</td>
</tr>
<tr>
<td>Application of the Principle of Similitude</td>
<td>22</td>
</tr>
<tr>
<td>Description of Model Scraper Tests</td>
<td>25</td>
</tr>
<tr>
<td>Box Type Scraper Tests</td>
<td>28</td>
</tr>
<tr>
<td>Crescent Type Scraper Tests</td>
<td>36</td>
</tr>
<tr>
<td>How Tests May Help to Chose the Best Operating Conditions</td>
<td>36</td>
</tr>
<tr>
<td>Conclusions Drawn from Study of Model Scrapers</td>
<td>51</td>
</tr>
<tr>
<td>Summary of Scraper Tests</td>
<td>52</td>
</tr>
<tr>
<td>Appendix</td>
<td>54</td>
</tr>
<tr>
<td>Bibliography</td>
<td>60</td>
</tr>
<tr>
<td>Vita</td>
<td>62</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Photograph of Box Scraper</td>
<td>16</td>
</tr>
<tr>
<td>2.</td>
<td>Photograph of Crescent Scraper</td>
<td>18</td>
</tr>
<tr>
<td>3.</td>
<td>Photograph of Recording Wattmeter</td>
<td>19</td>
</tr>
<tr>
<td>4.</td>
<td>Hoist-wattmeter Wiring Diagram</td>
<td>20</td>
</tr>
<tr>
<td>5.</td>
<td>Wattmeter Chart of Model Scraper Tests</td>
<td>21</td>
</tr>
<tr>
<td>6.</td>
<td>Costs Representation</td>
<td>47</td>
</tr>
<tr>
<td>7.</td>
<td>Costs Representation</td>
<td>48</td>
</tr>
<tr>
<td>8.</td>
<td>Costs Representation</td>
<td>50</td>
</tr>
</tbody>
</table>

LIST OF TABLES

Data on Scraper Transportation 6

LIST OF GRAPHS

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Box Scraper - Power Consumption - 126 fpm</td>
<td>29</td>
</tr>
<tr>
<td>2.</td>
<td>Box Scraper - Power Consumption - 191 fpm</td>
<td>30</td>
</tr>
<tr>
<td>3.</td>
<td>Box Scraper - Power Consumption - 252 fpm</td>
<td>31</td>
</tr>
<tr>
<td>4.</td>
<td>Box Scraper - Capacity - 126 fpm</td>
<td>33</td>
</tr>
<tr>
<td>5.</td>
<td>Box Scraper - Capacity - 191 fpm</td>
<td>34</td>
</tr>
<tr>
<td>6.</td>
<td>Box Scraper - Capacity - 252 fpm</td>
<td>35</td>
</tr>
<tr>
<td>7.</td>
<td>Crescent Scraper - Power Consumption - 126 fpm</td>
<td>37</td>
</tr>
<tr>
<td>8.</td>
<td>Crescent Scraper - Power Consumption - 191 fpm</td>
<td>38</td>
</tr>
<tr>
<td>9.</td>
<td>Crescent Scraper - Power Consumption - 252 fpm</td>
<td>39</td>
</tr>
<tr>
<td>10.</td>
<td>Crescent Scraper - Capacity - 120 fpm</td>
<td>40 & 41</td>
</tr>
<tr>
<td>11.</td>
<td>Crescent Scraper - Capacity - 191 fpm</td>
<td>42</td>
</tr>
<tr>
<td>12.</td>
<td>Crescent Scraper - Capacity - 252 fpm</td>
<td>43</td>
</tr>
</tbody>
</table>
INTRODUCTION

Many years of practice have resulted in the standardization of several types of scrapers which are now commonly manufactured for use in mining. Although experience has brought out much information on scraping operations, no systematic studies of the efficiency of mine scrapers have been carried out before the experimental work done in the last few years at Missouri School of Mines and Metallurgy.

Purpose of Problem:

The purpose of this present study is to consider the effect which moisture in the muck has on the efficiency as regards power consumption and amount of material scraped, of different types of mine scrapers. Scraper weight, rope speed, and moisture content were the variables considered for each scraper type.

Problem Procedure:

Two kinds of scrapers were tested, namely: The box scraper and the crescent scraper. They were available in the mining laboratory.
The model scrapers were constructed at a scale of 1 to 6.

A small electrically-driven hoist was used to pull the buckets on a 15 foot-long table. A Westinghouse watt-meter connected with the electric motor graphically recorded the power consumed.

The weight of material scraped after a given number of passes was determined. The power consumed was computed from the graphic registration of the wattmeter.

REVIEW OF LITERATURE

History of Scraping:

(4)

According to Van Barneveld, power scrapers were first used

for moving mine muck by the Bunker Hill and Sullivan Mining Company, at Kellogg, Idaho, in 1898. A small single-drum air hoist powered a slip scraper which was guided and pulled back to the muck by hand.

Slip scrapers were used until 1921, but the development of two drum hoists and bottomless scrapers began before World War I and resulted in a great increase of efficiency over that work yielded by the single-drum, slip scraper.

The greatest, early field of application of scraping practice in mining took place in the Lake Superior iron and copper districts and, since 1936, scraping has been used importantly in the Tri-State Mining District of Missouri, Kansas and Oklahoma.
Developments in the past twenty years have been characterized by increases in horse-power, in rope speed, and in weights of buckets together with the common adoption of three-drum hoists.

An abstract of the history of scraper practice has been given by Forrester and Clayton.

Scraper Operation Data:

Briefly, the field of application of power scrapers may be classified as follows:

Development work.

- Inclined shafts
- Drifts and cross-cuts

Production stopes.

- Top slicing stopes
- Open stopes
- Room and pillar stopes
- Sub-level caving stopes
- Cut and fill stopes
- Glory-hole or mill-hole stopes
- Square-set stopes
- Shrinkage stopes
- Block-caving stopes

Filling stopes with waste and tailing

Transfer of material in sub-levels

Open-pit mining
Placer mining

According to Jackson and Hedges, scrapers are best adapted to underground use where large quantities of ore must be moved comparatively short distances. According to Jackson and Hedges, scrapers are best adapted to underground use where large quantities of ore must be moved comparatively short distances. (6) Jackson, Chas. F., and Hedges, J.H., Metal Mining Practice. U. S. Bureau of Mines, Bulletin No. 419, 1939, p. 183.

Peele states that scrapers are very well suited to excavating very thin coal seams where cost of removing roof or floor material to permit use of mobile loaders would be prohibitive. (7) Peele, Robert, Mining Engineers’ Handbook, Third Edition, John Wiley and Sons, pp. 27, 11 and 12.

The main factors affecting efficiency are summarized as follows by Jeppe:

a. Size of scoop.
b. Speed of rope.
c. Amount of delays due to broken ropes and other inevitable repairs.
d. Stoping width, concentration of rocks, length of drag.
e. Position of scraper lines.

Pierce and Bryan bring out the advantages of scrapers over

other types of loading machines: For example,

a. Operation of a mechanical scraper is very simple and does not necessitate a long education plan.

b. Initial cost is less than that of other loading and conveying machinery.

c. It is not complex and has few exposed parts.

d. The bucket and rope of the unit usually are the only parts exposed to possible roof falls, thus, the whole scraper installation is less liable to damage than are other common loading devices.

e. It accommodates more diversified types of mining conditions.

f. Men need stay in untimbered areas but a fraction of the total working time.

Motive Power:

(10) Johnsen gives detailed data on scraper hoists.

(10) Johnsen, S. F., *op. cit.* pp. 5-17.

The trend during the past 25 years has been toward the use of larger, more powerful scraper hoists capable of pulling heavier loads at higher speeds. Overpowered hoists are desirable for scraper work, as they are commonly subjected to rough use and frequent momentary overloading, and, though the first cost is higher, maintenance is considerably less.

Table 1 presents data on a few operations and is quoted after (11) Jackson and Hedges. They state, too, that for long drags, the

<table>
<thead>
<tr>
<th>Type of Ore</th>
<th>Hoist Details of Scraper</th>
<th>Scrapping Distance</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Horse Power ft. per Min.</td>
<td>Width inches</td>
<td>Weight lbs</td>
</tr>
<tr>
<td>Soft iron ore</td>
<td>15</td>
<td>225</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>240-280</td>
<td>48</td>
</tr>
<tr>
<td>Hard and soft iron, some chunks</td>
<td>15</td>
<td>240-280</td>
<td>42</td>
</tr>
<tr>
<td>Hard, chunk rock and soft iron ore</td>
<td>25</td>
<td>230</td>
<td>54</td>
</tr>
<tr>
<td>Large blocks of Zn ore in dolomite gangue</td>
<td>25</td>
<td>200 high</td>
<td>72</td>
</tr>
<tr>
<td>Coarse and fine copper-bearing conglomerate</td>
<td>35</td>
<td>144 low</td>
<td>48</td>
</tr>
<tr>
<td>Very hard ore, large angular blocks</td>
<td>60</td>
<td>80</td>
<td>2800</td>
</tr>
<tr>
<td>Iron ore, large slabs</td>
<td>55</td>
<td>130-150</td>
<td>48</td>
</tr>
<tr>
<td>Hard, blocky magnetite</td>
<td>25</td>
<td>200</td>
<td>48</td>
</tr>
<tr>
<td>Large, heavy</td>
<td>150</td>
<td>190 return 174 pull</td>
<td>34</td>
</tr>
</tbody>
</table>
more efficient practice is to employ a two-speed hoist, wherein the low speed is used for digging and the high speed for dragging. They add that the data compiled in Table 1 were collected in 1932 and that since that time considerably higher speeds have been adopted. For example, 350 fpm is now common, and in some mines speeds of 450 fpm for pulling the load and 650 fpm for returning the empty scraper have been tried successfully.

Scraper hoists are powered by electric or compressed-air motors.

Air Hoists: Piston and turbine motors are employed. Turbine motors are faster but are more apt to freeze than the piston types which, on the other hand, consume more air. Generally electric motors are preferred. Jackson and Hedges justify the preference from the standpoint of power consumption. In actual practice, the air-operated hoist requires six or eight times as much primary power as the electrically driven one.

(12) Jackson and Hedges, *op. cit.*, p. 185.

Matson has presented figures comparing costs of scraping with air and electric hoists. For instance he cites cases where 604,005 tons of ore were scraped with air hoists at a power cost of $0.0346 per ton and where 91,124 tons of ore were moved with electric hoists at a power cost of $0.0042 per ton; a ratio of about 8 to 1.

However, Jackson and Hedges and Matson credit air hoists with certain advantages. They are, (1) the cooling and ventilating effect of exhaust, (2) a better control of the speed of the air motors by the throttle control, (3) if overloaded, air hoists stall without damaging the motor, (4) show less susceptibility to be damaged by moisture than electric motors, (5) better safety in gaseous coal mines.

Electric hoists: As previously stated, cost of power is lower for an electric motor than for air-driven hoists. Although power cost is not as important as some other items in the total cost of scraping operation it is an interesting feature. Jackson and Hedges give two examples to demonstrate the proportionate costs of various items involved in operating electrically driven hoists.

<table>
<thead>
<tr>
<th></th>
<th>Cents per Ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor</td>
<td>5.27</td>
</tr>
<tr>
<td>Rope</td>
<td>1.43</td>
</tr>
<tr>
<td>Repairs and renewals</td>
<td></td>
</tr>
<tr>
<td>including sheaves</td>
<td>1.86</td>
</tr>
<tr>
<td>Power</td>
<td>0.69</td>
</tr>
</tbody>
</table>

In this example, the scraper weighed 1,760 pounds and had a capacity of 1 ton of ore. The average scraping distance was 175 feet, the maximum being 400 feet.

At another mine, the cost of loading in drift headings with scrapers and slide and 25-horsepower electric hoist was divided as

For example, they show: (1) better efficiency (65% as against 15% for air hoists), (2) an ability to supply any demand of power, (3) better safety due to less noise of operation.

Both A.C. and D.C. motors have been used for powering scrapers. The earlier installations were generally composed of D.C. motors directly connected to the haulage wires. However, the numerous advantages of A.C. motors succeeded in making them used to an ever greater extent. The common advantages of A.C. motors over the D.C. type are: less line losses, lower first and maintenance cost of A.C. line and motors, better ability to withstand overload, no commutation troubles or danger of burning armatures.

Appropriate equipment allows a good control of the speed of an A.C. motor. This is obtained by adjusting the amount of resistance placed in series with the secondary or rotor winding of the motor. This adjustment is accomplished magnetically through a bank of grid resistors, regulated by a multipoint master controller which also provides for reversal of the motor. 60 cycle, 440 to 550 volt current is now common although some older installations still operate under voltages of around 220.
Scraper-Hoist Assemblies:

A wide range in sizes of hoists as well as of buckets exist today. For instance, Ingersoll-Rand manufactures more than 440 sizes and types of hoists.

Large hoist-ramp assemblies are often mounted on track wheels, or in other cases, hoist and scraper-ramp are mounted on caterpillar treads. Portable scraper-hoist outfits are also available.

Double-drum hoists are presently more numerous than three-drum hoists, but the use of the three-drum hoists is increasing. They have proved their convenience in wide stopes where a lateral movement of the scraper is very useful and desirable, and also in pillar recovery where slushing is not limited to one direction.

Design of Scrapers:

Three types of scrapers have become standardized in practice:

1. the hoe scraper,
2. the box scraper,
3. the crescent scraper.

Modifications may be made, as desired, by adding side plates or teeth. Teeth often are useful when slabbted material has to be moved.

An important consideration is the digging angle of the scraper. That is, it is the angle that the cutting edge of the scraper blade makes with the muck pile when the rope is under maximum tension. According to Van Barneveld

(19)
of a scraper would occur when the plane of the cutting edge lies in the resultant of the pull and of the force of gravity. With these theoretical considerations, he deduces that the best digging angle is 30 degrees. However, experience has shown that digging angles of 45 to 50 degrees generally fit best any condition of work.

A forward curvature at the top of the blade, or a baffle plate fastened to the top of the blade, is often provided to prevent the scraper from digging after it is loaded.

Scrapers must have a balance which properly favors their digging and riding characteristics. This is obtained by using long and heavy bails which must rest on the ground, and by a judicious distribution of counterweights. Scrapers must be of rugged construction. Special alloys of manganese, chrome, molybdenum and nickel steels are commonly used in their fabrication.

Forrester and Clayton have drawn the following conclusions from their studies:

1. There is a weight where the scraper reaches its maximum effectiveness for a given rock size.

2. The bail must slightly overbalance the rear of the scraper.

3. For moving finely divided material the scrapers tested rank in the following order: crescent, slope bail hoe, straight bail hoe, and box.
4. For intermediate rock sizes the scrapers rank in the following order: slope bail hoe, straight bail hoe, crescent and box.

5. For very coarse material the straight bail hoe is the only scraper applicable.

6. A baffle plate at the top of the scraper blade helps prevent the scraper from continuing to dig after it has a full load.

Efficiency of Scrapers:

Forrester and Carmichael have studied the effect of rope speed on scraper efficiency. Their conclusions are:

1. The flow of the muck pile during operation of the hoe scrapers can be utilized as a contributing factor to scraper efficiency.

2. The efficiency of a given scraper is at a maximum at a definite rope speed for any size of material.

3. The hoe scrapers are less affected by variations in rope speed than either the box or crescent scrapers.

4. The decline in scraper efficiency beyond the optimum speed is so gradual that the saving in time might outweigh the loss in efficiency at higher speeds.

Johnsen in his studies has been chiefly concerned with power consumption. He concluded as follows:

1. Inasmuch as the efficiency of a given scraper varies with the weight of the scraper, the efficiency is at a maximum at a def-
inite weight.

2. Variations in efficiencies between lighter weight scrapers are greater than the variations between the heavier ones. Therefore, too much weight is better than too little.

3. The efficiency of any scraper is at a maximum at a definite rope speed. For all types except the straight bail hoe scraper, the optimum rope speed is about 340 feet a minute; the straight bail hoe operates best at 250 fpm.

4. The amount of rock scraped per pass does not necessarily establish the best operating conditions for a given scraper. These conditions can be determined only after a coordinated study of the amount of rock scraped and the amount of power consumed. (23) Johnsen reports, too, that the efficiency of a scraper, as far as load capacity is concerned, gradually declines when worked beyond the optimum speed but that up to a certain point the saving in time with higher speeds would overbalance the small drop in scraper capacity. His power consumption tests showed that to be true for the lighter weights. Nevertheless, when more weights were added to the scrapers, the majority of the tests showed a progressive increase in efficiency as the rope speeds were increased. The capacity of each scraper load gradually decreased during Johnsen's tests but the time saving was enough to affect lower power consumption per given weight of rock scraped.

(23) Johnsen, *op. cit.*, pp. 33-34.
Effect of Moisture:

Forrester and Carmichael and Johnsen have studied the effect of moisture on the efficiency of the different types of scrapers for a specific rope speed (120 fpm). Only one weight was tested for each scraper. Discrepancies exist between their conclusions. Forrester and Carmichael state that the efficiency of a given scraper is at a maximum at a definite moisture content, whereas Johnsen states that addition of moisture does not increase scraper efficiency. Their attempt at ranking the scrapers according to the relative results obtained with each of them also is not concordant. The results of this present study which will clarify the matter of efficiencies of scrapers will be discussed later in this paper.

APPARATUS FOR SCRAPER TESTS

Equipment used in tests:

The model scrapers available for this present research had been used previously by other students. The scrapers were constructed on a scale of 1 to 6, and are 8 inches wide. The scrapers tested are shown in Figures 1 and 2.

The scrapers were operated with a three-drum hoist with double-faced friction clutches. The drums built of aluminum were mounted on a three-quarter inch line shaft set in ball-bearing pillow blocks.

The hoist was powered by a $\frac{1}{2}$-horsepower, split-phase, electric
motor using 60 cycle A.C., 115 volt current. The motor furnished 1,750 R.P.M. The drive was belted to a 12-inch pulley on a jack shaft. A three-step cone pulley on the opposite end of the jack shaft was belted to a similar pulley on the hoist shaft. This combination of pulleys gave a theoretical R.P.M. of 155, 211, 233, 317, 429, 475, or 646, as desired, at the hoist.

The checking of the RPM available at the drum was done by S. F. Johnsen. A small thin piece of wood held against a notch in one of clutch plates produced clicks easily counted while the hoist was running. The time interval between a number of clicks was determined by a stop-watch. Several RPM checks were made for each combination of pulleys used in scraper tests. The hoist speed were found to be 160, 242, and 319 R.P.M.

The radii of the hoist drums were 1.48 inches. The hoist cable used was 1/16 inch in diameter. The effective radius of each drum from the center of the drum to the core of the rope thus was 1.51 inches. Therefore, the rope speed was calculated to be 126, 191, 252 feet per minute.

The table upon which the scraper tests were run was 15 feet long and 4 feet wide, and was surfaced with rough "masonite" fiber board. It was possible to lower the end of the table opposite the hoist. An opening one foot square was located two feet from the hoist and was equipped with a three-inch grizzly. Below the grizzly an inclined chute directed the material down to the receiving pan
Figure 1
Box Scraper
placed on the floor. The adjustable end of the table was equipped with two sheave wheels for attaching the cable. Side and back-boards prevented the rock from spilling off the table. The back end had to be lowered to avoid water flowing through the chute.

A Type R Westinghouse recording wattmeter was used to measure the power consumption. It was set up near the hoist as shown on Figure 3. A wiring diagram of the wattmeter and motor is illustrated in Figure 4.

Material Tested:

The rock used was fresh, unaltered granite. The shape of particles was splintery to blocky. Mixed size material was employed, since it is what is most commonly found in mines. It was screened and classified as follows: minus 3/16, plus 3/16 minus \(\frac{1}{2} \) inch, plus \(\frac{1}{2} \) minus 1 inch, plus 1 minus 11/2 inch plus 11/2 minus 2 inches, plus 2 minus 6 inch.

Method of Collecting Data:

A galvanized iron pan of 9 by 53 by 53 centimeters dimension served to receive the rock scraped through the chute. The rock was weighed on an Ohaus balance. The desired moisture content was obtained by adding water as needed, to a known weight of rock on the table. Moisture content was recorded as per cent moisture by weight.

The graphs on the wattmeter chart permitted computation of the amount of power consumed in each test.

Figure 5 shows a portion of one graph, as traced by the wattmeter, and makes obvious the way the amount of power was determined.
Figure 2
Crescent Scraper
Figure 3
Recording Wattmeter
and Hoist
Figure 4
Hoist-Wattmeter Wiring Diagram
Figure 5
Wattmeter Chart of Model Scraper Test
Box Type, 191 fpm.
For example, the length as divided by 2.84 gives the number of seconds during which the recorded power, \(p \), has been consumed. By multiplying these two figures the number of watt-seconds is determined. By repeating this operation for each cycle on the diagram, and adding the results, the total amount of power consumed during one test is computed.

Application of the principle of similitude:

As Tolman points out, "the fundamental entities out of which

\[(27) \]

the physical universe is constructed are of such a nature that from them a miniature universe, similar in every respect to the present universe, could be constructed." Transformation equations may be established, giving the relation between our physical universe and the experimental miniature universe.

\[(28) \]

After Carlson, the necessary and sufficient conditions for dynamic and static similitude of a model and a prototype are defined by two rules as follows:

1. The model shall be geometrically similar to its prototype, except as to the dimensions which do not affect the behavior of the model.

2. The force scale-reduction factor shall be the same for

\[(27) \text{ Tolman, R. C., The Principle of Similitude, Physical Review, Vol. 3, Ser. 2, 1914, p. 244.} \]

\[(28) \text{ Carlson, R. W., General Structural Similitude, University of California Publications in Engineering, Vol. 3, No. 1, 1933, pp. 139-144.} \]
forces arising from each of the various influences.

The following symbols, in which subscripts refer to the model are adopted here for a discussion of such relations as Carlson has proposed.

\(w \) and \(w_1 \) are densities of material.

L and \(L_1 \) are linear dimensions. The scale-reduction factor of length, \(L/L_1 \) is termed \(n \).

\(F \) and \(F_1 \) are homologous forces.

\(v \) and \(v_1 \) are velocities of corresponding points.

\(t \) and \(t_1 \) are time intervals, so defined that for periodic motion each represents the same phase change.

\(a \) and \(a_1 \) are corresponding accelerations.

The gravitational-force ratio is given by:

\[
\frac{F}{F_1} = \frac{wL^3}{w_1L_1^3}
\]

Inertial force is the product of mass and acceleration. Consequently it varies as the density, volume, and acceleration of the considered system. Since acceleration varies as the velocity, and inversely as the time, the inertia-force ratio is equal to:

\[
\frac{F}{F_1} = \frac{wL_1^3v_1t}{w_1L_1^3v_1t}
\]

Application of Carlson's Rule 2 (above) results in the following equation:

\[
\frac{F}{F_1} = \frac{wL_1^3v_1t}{w_1L_1^3v_1t}
\]
Maintenance of geometrical similarities under all phases of motion and degrees of load, requires that the length units which go with \(t \) and \(t_1 \) to make \(v \) and \(v_1 \), must be proportional to \(L \) and \(L_1 \). Thus, replacing \(v \) and \(v_1 \) by their equivalent values, \(\frac{L}{t} \) and \(\frac{L_1}{t_1} \), gives:

\[
\frac{F}{F_1} = \frac{wL_1 h_1^2}{w_1 L_1^2 t_1^2} = \frac{wL^3}{w_1 L_1^3}
\]

Hence, two equations are established, as against four scale-reduction factors; \(\frac{F}{F_1} \), \(\frac{w}{w_1} \), \(\frac{L}{L_1} \), and \(\frac{t}{t_1} \) and the free choice of two of the scale-reduction factors is permitted.

The model scrapers used in this experimentation have been constructed in such dimensions that the reduction factor \(\frac{L}{L_1} \) of length is fixed at \(L_1 = 1/6 \) of its prototype, commercial, full-scale scraper. Therefore, the choice in the tests rested among one of the factors \(\frac{F}{F_1} \), \(\frac{w}{w_1} \), or \(\frac{t}{t_1} \). Nevertheless, the factor, to be selected from among these three possibilities, has to be chosen carefully in order that the applications of the relations deduced from its choice do not give rise to absurd results. For instance, it may be assumed that the densities of the material to be scraped either in industrial practice or in model testing is the same. Then:

\[
\begin{align*}
\frac{L}{L_1} &= n = 6 \\
\frac{w}{w_1} &= 1 \\
\frac{F}{F_1} &= n^3 = 216 \\
\frac{v}{v_1} &= n^4 = 2.45 \\
\frac{t}{t_1} &= n^{1.5} = 2.45
\end{align*}
\]

If \(P \) be taken as the power consumption and \(F \) the rated horsepower
of the hoist motor, then

\[
\frac{p}{p_1} = n^4 = 1.296
\]

\[
\frac{p}{p_1} = n^{7/2} = 530
\]

This establishes that a motor of about 130 H.P. will be required to activate a three-drum hoist in industrial practice. A sensible choice of the factors which are left to our determination will allow, and make valuable, further interpretation of the conclusions arrived at by studies of the model equipment.

It also becomes evident that so much depends, in underground practice, on non-measurable elements, that a mere generalization of model test results cannot be wholly satisfactory.

However, the data obtained by model experimentation may furnish indications of the variations which might be expected to accrue when the corresponding elements of the prototype are varied in a similar way.

DESCRIPTION OF MODEL SCRAPER TESTS

As said previously, crushed granite was used for the tests. The granite was mixed in proportions, as follows:

- minus 3/16 inch, 55%;
- plus 3/16 minus 1/8 inch, 25%;
- plus 1/8 minus 1 inch, 10%;
- plus 1 minus 1 1/2 inch, 5%;
- plus 1 1/2 minus 2 inch, 3%;
- plus 2 minus 6 inch, 2%

The granite was placed at one end of the table. Twenty passes from the muck pile to the grizzly were run for each test. The material then was weighed. The power consumed was recorded on a graph during the operation, and the total amount of power was computed.
The muck pile always was set in the same position and was given the same shape before each test. Part of the load was lost during the first passes. However, ridges quickly were built up, which avoided further losses of consequence.

Not only the importance of the shape of the pile, but the importance of the repartition of the chunks inside it, were recognized during the operations. In the course of the scraping a kind of natural segregation transpired, and, if too many big lumps appeared in the surface, the digging ability of the bucket was impaired and important variations in the results would develop if attention was not paid to these two factors. It is the belief of the writer that 20 passes per test represent a minimum, and that possibly as much as 100 would give an average result tending to elimination of the above sources of error. However, lack of time did not allow the successive operators to run more than 20 passes per test. As the aim of these studies is not to give absolute figures, but to bring out relative variations, the procedure adopted is deemed to be sufficiently accurate.

The use of the three-drum hoist permitted scraping from any locality on the table. To avoid additional power consumption, and to operate the tests in about the same conditions, the maneuvering was reduced as much as possible.

One hundred and twenty tests were run. The rope speeds used were 126, 191 and 252 fpm. For speeds over 252 fpm the box and crescent scrapers bounced too much to yield reliable data. Each of the scrapers was tested for four different weights and zero, five, ten, fif-
teen and twenty per cent moisture values were successively tried. Each time the true moisture content of the material was determined by taking several samples and weighing before and after drying. The results were as follows:

<table>
<thead>
<tr>
<th>Moisture added (% in weight)</th>
<th>0 : 5 : 10 : 15 : 20 :</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture content (% in weight)</td>
<td>0 : 4.8 : 6.9 : 7.1 : 7.2 :</td>
</tr>
</tbody>
</table>

The water which was not absorbed by the rock remained spread on the table.

After completion of all the tests, an examination of the results showed that eleven of them seemed to present elements of singularity. They were rerun for checking purposes. The new figures obtained were more satisfactory and therefore were recorded as true values.

The results obtained were plotted in two types of curves: (1) The first type of curve is established by plotting "watt-second per gram scraped" in ordinate and "per cent of moisture" in abscissa. These curves give for each weight and rope speed the variation of power consumed in function of moisture added. (2) The second type of curves are obtained by plotting "gram scraped per gram of scraper" in ordinate and per cent of moisture in abscissa. These curves give for each weight and rope speed the variation of efficiency of each scraper bucket. The second type of curve gives a fair representation of the variation of efficiency of a scraper when operated under given conditions of weight and rope speed. In practical usage, one of the chief concerns of the operator is the quantity of muck pulled. Unfortunately, the curves do not indicate such a relationship.

For example, a scraper weighing 2060 grams, and having an effic-
iency of 1.65 grams of rock per gram of scraper, carries 3,400 grams per pass. The same type of scraper weighing 1,140 grams and having an efficiency of 1.96, carries a load of only 2,220 grams. Consequently, the coefficient "grams of rock per gram scraped" does not allow a direct comparison of results obtained where different weights are used. As the amount of load carried is an important point to know when judging the overall efficiency of a scraper, these figures are compiled in the tables placed in appendix. (See appendices A to F).

(29) Johnsen states that the addition of moisture to the muck does not increase the efficiency of scrapers. This result was corroborated in a more specific way. That is, it has not been found possible, in the present research, to give the scrapers such a definite rank on the basis of their efficiency ratings during the moisture tests. Hence, this experimentation has shown that the first rank in efficiency shifts from one to the other types of scrapers when the values given to the different variables are changed.

Box Type Scraper Tests:

Graphs 1, 2, and 3 show that power consumption increases with an increase in moisture content. As it is the weight of dry rock scraped which has been figured, and considering the fact that the denser muck pile is more difficult to dig, the shape of the curves look logical.
Graph 1. Relationship between moisture content of rock and power consumption.

Box Type
126 fps
Graph 2. Relationship between moisture content and power consumption.

Box Type
191 fpm
Graph 3. Relationship between moisture content and power consumption.

Box Type
252 fpm
The maximum rate of increase is obtained when moisture content rises from 0 to 5%. As has been stated before, beyond 5%, the true moisture of the rock shows very little augmentation with greater addition of water. It explains why the curves show a tendency to flatten.

The graphs also show that at a given speed power consumption is the lowest for a given weight. They establish, too, that the optimum efficiency is obtained for heavier weights as speed increases, and that the difference in power consumption between light weights (1140 gms) and heavy weights (2060 gms) becomes more important as speed is increased.

Graphs 4, 5, and 6 prove that the load which can be carried decreases as moisture content grows higher. The drop in efficiency is more pronounced with the lighter scrapers than with the heavier ones. The graphs and tables in the appendices also indicate that the quantity of material scraped at a definite speed is at a maximum at a given weight and that the most favorable results are obtained with heavy scrapers.

The important fact to be noted is that the relative disposition of the points of intersection of the curves drawn for a given speed, with parallels to the ordinate axis, do not vary whatever the moisture content may be. Consequently, at any moisture content, the variations in efficiency will be represented by curves exactly parallel to those determined in previous studies of scraping dry rock when the same variables are considered. Conclusions drawn from studies of the dry tests on scraper models are available for any moisture content.
Graph 4. Relationship between moisture content and weight of rock scraped.

Box Type
126 fpm
Graph 5. Relationship between moisture content and weight of rock scraped.

Box Type
191 fpm
Graph 6. Relationship between moisture content and weight of rock scraped.

Box Type
252 fpm
Crescent Type Scraper Tests:

The crescent scraper is affected by a variation in moisture in much the same manner as the box scraper. However, ranges of variation were more important than for the box type.

The curves in graphs 7, 8, and 9 demonstrate that an increase in moisture content increases power consumption, and that, as the disposition of the curves prove, conclusions reached for dry rock studies are still expressed in the same manner as if water were used. They show that at a definite speed, power consumption is at a minimum for a given weight and that this weight, for which there is a minimum power consumption, tends to become greater as speed increases. Also, the power consumed reaches a new minimum as the speed increases.

Graphs 10, 11, and 12 establish that the efficiency of the crescent scraper, expressed as grams of rock scraped per gram weight of scraper, drops with the addition of water. Tables in the appendices indicate that the quantity of material carried per pass is at a maximum at a definite speed for a definite weight.

How Tests May Help to Chose the Best Operating Conditions:

The preceding comments have stressed the importance of a proper selection of the rope speed and of the type and weight of scraper when scraping operations are contemplated.

The miner is interested in scraping a big amount of material at low cost. Consequently, the efficiency of the scraper as regards weight of muck carried, and power consumption, are two items which
Graph 7. Relationship between moisture content of rock and power consumption.

Crescent Type

126 fpm
Graph 3. Relationship between moisture content of rock and power consumption.

Crescent Type

191 fpm
Graph 9. Relationship between moisture content and power consumption.

Per cent moisture by weight in rock.

Watt-Second Per Gram of Rock Scraped

(Dry Equivalent)
Graph 10. Relationship between moisture content and weight of rock scraped.

PER CENT MOISTURE AT WEIGHT IN ROCK

Weight of Rock Scraped (Dry Equivalent) Per Gram Scraper
Graph 10. continued.

Crescent Type
120 fpm

PER CENT MOISTURE BY WEIGHT IN ROCK
Graph 11. Relationship between moisture content and weight of rock scraped.

Crescent Type
191 fpm
Graph 12. Relationship between moisture content and weight of rock scraped.

Crescent Type
252 fpm
should guide his choice.

Time studies may show which speed will be the better. It is more difficult to determine when power consumption will be the lowest and what will be its direct effect on the cost.

Tests similar to those that have been carried out may give values whereby the average load and power consumption per pass for different weights of scrapers may be determined. A greater amount of rock scraped may be accompanied by such an increase in power consumption that the cost may be higher than what would be the case with another weight of scraper giving a lesser load capacity per pass.

The question is raised as to how the best operating conditions may be determined; that is, the most favorable set of values for weight of scraper and power consumption? Even though the solution may appear obvious in some cases a theoretical solution may be developed to obtain easily an answer for any case. For example,

Let i be the investment and maintenance cost per unit of weight of material, and:

\[
\begin{align*}
L & = \text{ labor cost} \\
E & = \text{ energy cost} \\
m & = \text{ average load per pass at a given weight of scraper} \\
p & = \text{ power consumption per pass} \\
l & = \text{ average length of haul} \\
v & = \text{ speed} \\
t & = \text{ time to run a pass} \\
h & = \text{ unit rate of wages} \\
r & = \text{ cost of unit of power}
\end{align*}
\]
\[c = \text{total cost per unit of weight of material} \]

Then, the total cost per pass will be,

\[cm = im + L + E \]

\[L = \frac{ht}{v} = \frac{h}{v} \]

\[E = pr \]

\[cm = im + rp + \frac{hl}{v} \]

If \(l \) and \(v \) are fixed, the equation becomes,

\[(1) \quad cm = im + rp + L \]

Now, given two sets of conditions, \((m_1, p_1)\) and \((m_2, p_2)\), it is desired to ascertain which will make \(c \) the lowest. If corresponding values for \(m \), \(p \), and \(c \) are plotted on three rectangular axis of coordinates, relation (1) represents the equation of a hyperbolic paraboloid. As it is a ruled surface, the determination of its generators will help to obtain graphically the desired solution.

Intersection of the surface (1) with the plane

\[im + rp + L = 0 \]

is composed of the two lines:

\[c = 0 \]

and

\[im + rp + L = 0 \]

\[m = 0 \]

represented on Figure 6 by \(AB \) and \(AX \).

Intersection of the surface with the plane

\[im + rp + L = c \]

is the line
\[im + rp + L = c \]
\[m = 1 \]

represented by BD on Figure 6.

It is apparent that the hyperbolic paraboloid is generated by horizontal lines, such as AB, parallel to the plane \(c = 0 \), and passing through the lines BD and AX.

It is more convenient to represent the surface by a descriptive geometry process, (Figure 7):

\[ax \] is the projection of AX
\[ed \text{ and } e_1 \text{ the projections of } BD \]
\[ab \text{ and } a_1 \text{ the projections of } AB \]

For each set of values for \(m \) and \(p \), a new point \(N \) is established on the surface and is projected in \(n \) (Figures 6 and 7). The \(c \)-coordinate of the point of intersection with the surface of the vertical line passing through \(N \) has to be determined. The intersection of the plane NAX with the paraboloid is composed of the line AX and an horizontal line easy to construct; Figure 7 shows the process. The vertical plane NAX cuts the vertical plane \(ed \) following the vertical line \(p_1 q_1 \), q. The horizontal line \(p_1 n_1 \) passing through \(p_1 \) is the line sought. \(n \), \(n_1 \) is the point on the paraboloid of which the projection on the plane pom is \(n \). Hence the procedure for comparing costs is as follows:

Two sets of values, \((m, p)\), \((m_1, p_1)\) are plotted as points \(n \) and \(r \). Lines \(an \) and \(ar \) cut line \(cd \) in \(q \) and \(s \). Then \(p_1 q_1 \) and \(u_1 s_1 \) represent the corresponding costs. The process is simple and allows a ready comparison of the unit costs. Also, it is evident that the costs will be the same when \(n \) and \(r \) are in a straight line with \(a \).
Illustrates how easy is the determination of costs on a graph paper once explanatory intermediate construction steps are removed.
arn is then the projection of a horizontal generator of the paraboloid.

In generalizing the solution, two types of scraper equipment for which i, and v would be different may need to be compared. The relations between our variables would be:

\[(1) \quad cm = im + rp + L \]
\[(2) \quad cm = i_1 m + rp + L_1 \]

The descriptive representation of the two paraboloids is given on Figure 8. The first one is defined by the generators \(a \) and \(ax \), \(ed \), and \(e_1 d_1 \) \(ab \), and \(ao \). The second one is defined by the generators \(j \) and \(jy \), \(gd \), and \(g_1 h_1 \), \(jf \), and \(jo \).

The procedure to be followed in making a solution is the same as above given. Let the costs be compared for a given set of values \((m, p) \), which is represented by point \(n \) in Figure 8. Line \(an \) cuts \(cd \) in \(q \), \(jn \) cuts it in \(s \). Then \(q_{1L1} \) and \(s_{1L1} \) (see Figure 8) are the two costs that have to be compared.

The curve intersection of the surfaces (1) and (2) is located in the plan:

\[(3) \quad (i-i_1) m + L - L_1 = 0 \]

It is a hyperbola projected in the plan \(pm \) following the line defined by equation (3). All the points located on that line are such that they will define sets of conditions producing the same costs in the two systems considered. By a generalization of what is called, in engineering economy studies, the "break-even point" it can be called a "break-even line". It divides the plane into regions for which one of the set-ups is the most favorable.
so

Illustrates how easy is the determination of costs on a graph paper.
CONCLUSIONS DRAWN FROM STUDY OF MODEL SCRAPERS

1. The addition of moisture decreases the efficiency of scrapers.

2. When the same set of variables are considered, similar results are obtained with the wet rocks as were obtained, in previous studies, with dry rocks.

3. At a given speed, power consumption is at a minimum for a given weight, and, at the same time, the power consumed reaches a new minimum as the speed increases.

4. The optimum weight grows heavier with increases in rope speed.

5. At a given speed, the amount of rock scraped has an optimum for a given weight.

6. Heavy weights of scraper favor heavy load per pass.

7. Minimum power consumption and maximum load moved are not necessarily realized simultaneously. Time studies, and engineering economy studies are both necessary to establish the best operating conditions.
SUMMARY OF SCRAPER TESTS

Two model scrapers were tested to determine the effect of moisture on their efficiency, and to ascertain the best conditions under which the respective scrapers could be operated. Variations in power consumption and amount of rock scraped were recorded when weight of scraper, rope speed, and moisture content of the muck were varied.

The models tested were the box and the crescent scrapers. They were constructed on a scale of 1 to 6 and were 8 inches wide. The rock used was crushed granite of mixed size.

One hundred and twenty tests were run. Added moisture ranged from 0 to 20 per cent of the weight of the muck and the rope speeds ranged from 126 to 252 feet a minute in different tests.

It was found that moisture decreases scraper efficiency and increases power consumption. These findings are similar to those found by previous experimentation conducted on dry muck. In any case, when a particular rope speed of hoisting is employed, there is a given weight of scraper which should be used to realize optimum conditions of scraper efficiency and power consumption.

Power consumption and carrying efficiency are not at the best at the same time. Only conjugated time studies and engineering economy studies can help determine the most favorable operating conditions.

It is the opinion of the writer that the aim of model scraper studies is not to give results directly exploitable in practice by the direct application of similitude ratios. The greatest value of
such studies lies in the fact that by model experimentation it is possible to establish relations of variables that will indicate probable optimum operating conditions that should exist in the commercial prototype.

Further studies with a material of different density would be useful in order to ascertain if the conclusions drawn from this present work may be generalized to obtain for any kind of material.
APPENDIX A

Rope Speed Tests at 126 FPM

Scraper Box

<table>
<thead>
<tr>
<th>Weight</th>
<th>Percent Moisture</th>
<th>Watt-sec. per gram rock</th>
<th>Gms. rock per gram scraper</th>
<th>Wt. dry matter per pass, gms.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1140</td>
<td>0</td>
<td>0.715</td>
<td>1.96</td>
<td>2,234</td>
</tr>
<tr>
<td>1140</td>
<td>5</td>
<td>0.737</td>
<td>1.84</td>
<td>2,097</td>
</tr>
<tr>
<td>1140</td>
<td>10</td>
<td>0.782</td>
<td>1.818</td>
<td>2,072</td>
</tr>
<tr>
<td>1140</td>
<td>15</td>
<td>0.805</td>
<td>1.77</td>
<td>2,017</td>
</tr>
<tr>
<td>1140</td>
<td>20</td>
<td>0.82</td>
<td>1.75</td>
<td>1,995</td>
</tr>
<tr>
<td>1550</td>
<td>5</td>
<td>0.545</td>
<td>1.90</td>
<td>2,945</td>
</tr>
<tr>
<td>1550</td>
<td>10</td>
<td>0.61</td>
<td>1.74</td>
<td>2,698</td>
</tr>
<tr>
<td>1550</td>
<td>15</td>
<td>0.618</td>
<td>1.75</td>
<td>2,713</td>
</tr>
<tr>
<td>1550</td>
<td>20</td>
<td>0.635</td>
<td>1.74</td>
<td>2,597</td>
</tr>
<tr>
<td>1790</td>
<td>0</td>
<td>0.66</td>
<td>1.742</td>
<td>2,700</td>
</tr>
<tr>
<td>1790</td>
<td>5</td>
<td>0.57</td>
<td>1.72</td>
<td>3,079</td>
</tr>
<tr>
<td>1790</td>
<td>10</td>
<td>0.64</td>
<td>1.70</td>
<td>3,043</td>
</tr>
<tr>
<td>1790</td>
<td>15</td>
<td>0.645</td>
<td>1.70</td>
<td>3,042</td>
</tr>
<tr>
<td>1790</td>
<td>20</td>
<td>0.68</td>
<td>1.69</td>
<td>2,025</td>
</tr>
<tr>
<td>2060</td>
<td>0</td>
<td>0.682</td>
<td>1.67</td>
<td>3,440</td>
</tr>
<tr>
<td>2060</td>
<td>5</td>
<td>0.713</td>
<td>1.66</td>
<td>3,420</td>
</tr>
<tr>
<td>2060</td>
<td>10</td>
<td>0.735</td>
<td>1.66</td>
<td>3,418</td>
</tr>
<tr>
<td>2060</td>
<td>15</td>
<td>0.72</td>
<td>1.65</td>
<td>3,400</td>
</tr>
<tr>
<td>2060</td>
<td>20</td>
<td>0.722</td>
<td>1.64</td>
<td>3,378</td>
</tr>
</tbody>
</table>
APPENDIX B

Rope Speed Tests at 191 FPM

Box Type

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1140</td>
<td>0</td>
<td>0.64</td>
<td>1.538</td>
<td>1,753</td>
</tr>
<tr>
<td>1140</td>
<td>5</td>
<td>0.755</td>
<td>1.425</td>
<td>1,625</td>
</tr>
<tr>
<td>1140</td>
<td>10</td>
<td>0.798</td>
<td>1.378</td>
<td>1,570</td>
</tr>
<tr>
<td>1140</td>
<td>15</td>
<td>0.822</td>
<td>1.36</td>
<td>1,550</td>
</tr>
<tr>
<td>1140</td>
<td>20</td>
<td>0.83</td>
<td>1.34</td>
<td>1,528</td>
</tr>
<tr>
<td>1550</td>
<td>0</td>
<td>0.50</td>
<td>1.76</td>
<td>2,728</td>
</tr>
<tr>
<td>1550</td>
<td>5</td>
<td>0.59</td>
<td>1.535</td>
<td>2,380</td>
</tr>
<tr>
<td>1550</td>
<td>10</td>
<td>0.62</td>
<td>1.50</td>
<td>2,325</td>
</tr>
<tr>
<td>1550</td>
<td>15</td>
<td>0.62</td>
<td>1.46</td>
<td>2,262</td>
</tr>
<tr>
<td>1550</td>
<td>20</td>
<td>0.64</td>
<td>1.435</td>
<td>2,224</td>
</tr>
<tr>
<td>1790</td>
<td>0</td>
<td>0.43</td>
<td>1.86</td>
<td>3,328</td>
</tr>
<tr>
<td>1790</td>
<td>5</td>
<td>0.545</td>
<td>1.70</td>
<td>3,043</td>
</tr>
<tr>
<td>1790</td>
<td>10</td>
<td>0.60</td>
<td>1.705</td>
<td>3,051</td>
</tr>
<tr>
<td>1790</td>
<td>15</td>
<td>0.60</td>
<td>1.68</td>
<td>3,006</td>
</tr>
<tr>
<td>1790</td>
<td>20</td>
<td>0.61</td>
<td>1.67</td>
<td>2,989</td>
</tr>
<tr>
<td>2060</td>
<td>0</td>
<td>0.32</td>
<td>1.67</td>
<td>3,440</td>
</tr>
<tr>
<td>2060</td>
<td>5</td>
<td>0.425</td>
<td>1.51</td>
<td>3,110</td>
</tr>
<tr>
<td>2060</td>
<td>10</td>
<td>0.51</td>
<td>1.44</td>
<td>2,966</td>
</tr>
<tr>
<td>2060</td>
<td>15</td>
<td>0.54</td>
<td>1.40</td>
<td>2,884</td>
</tr>
<tr>
<td>2060</td>
<td>20</td>
<td>0.588</td>
<td>1.37</td>
<td>2,823</td>
</tr>
</tbody>
</table>
APPENDIX G

Rope Speed Tests at 252 FPM

Box Type

<table>
<thead>
<tr>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scraper</td>
</tr>
<tr>
<td>Percent</td>
</tr>
<tr>
<td>Moisture</td>
</tr>
<tr>
<td>Watt-sec. per Gram Rock</td>
</tr>
<tr>
<td>Gms. Rock Per Gram Scraper</td>
</tr>
<tr>
<td>Wt. Dry Materia. Per Pass Gms.</td>
</tr>
<tr>
<td>1140</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0.54</td>
</tr>
<tr>
<td>1.68</td>
</tr>
<tr>
<td>1.916</td>
</tr>
<tr>
<td>1.420</td>
</tr>
<tr>
<td>1140</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>0.795</td>
</tr>
<tr>
<td>1.245</td>
</tr>
<tr>
<td>1.420</td>
</tr>
<tr>
<td>1.436</td>
</tr>
<tr>
<td>1150</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>0.84</td>
</tr>
<tr>
<td>1.260</td>
</tr>
<tr>
<td>1.436</td>
</tr>
<tr>
<td>1.437</td>
</tr>
<tr>
<td>1150</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>0.86</td>
</tr>
<tr>
<td>1.26</td>
</tr>
<tr>
<td>1.437</td>
</tr>
<tr>
<td>1.442</td>
</tr>
<tr>
<td>1150</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>0.85</td>
</tr>
<tr>
<td>1.25</td>
</tr>
<tr>
<td>2.635</td>
</tr>
<tr>
<td>2.286</td>
</tr>
<tr>
<td>1550</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0.41</td>
</tr>
<tr>
<td>1.70</td>
</tr>
<tr>
<td>2.201</td>
</tr>
<tr>
<td>2.108</td>
</tr>
<tr>
<td>1550</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>0.48</td>
</tr>
<tr>
<td>1.475</td>
</tr>
<tr>
<td>2.108</td>
</tr>
<tr>
<td>2.286</td>
</tr>
<tr>
<td>1550</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>0.50</td>
</tr>
<tr>
<td>1.42</td>
</tr>
<tr>
<td>2.201</td>
</tr>
<tr>
<td>2.286</td>
</tr>
<tr>
<td>1550</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>0.535</td>
</tr>
<tr>
<td>1.36</td>
</tr>
<tr>
<td>2.201</td>
</tr>
<tr>
<td>2.108</td>
</tr>
<tr>
<td>1550</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>0.56</td>
</tr>
<tr>
<td>1.32</td>
</tr>
<tr>
<td>2.201</td>
</tr>
<tr>
<td>2.108</td>
</tr>
<tr>
<td>1790</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0.31</td>
</tr>
<tr>
<td>1.71</td>
</tr>
<tr>
<td>3.060</td>
</tr>
<tr>
<td>2.757</td>
</tr>
<tr>
<td>1790</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>0.41</td>
</tr>
<tr>
<td>1.54</td>
</tr>
<tr>
<td>2.757</td>
</tr>
<tr>
<td>2.649</td>
</tr>
<tr>
<td>1790</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>0.45</td>
</tr>
<tr>
<td>1.48</td>
</tr>
<tr>
<td>2.649</td>
</tr>
<tr>
<td>2.488</td>
</tr>
<tr>
<td>1790</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>0.49</td>
</tr>
<tr>
<td>1.39</td>
</tr>
<tr>
<td>2.488</td>
</tr>
<tr>
<td>2.434</td>
</tr>
<tr>
<td>1790</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>0.52</td>
</tr>
<tr>
<td>1.36</td>
</tr>
<tr>
<td>2.434</td>
</tr>
<tr>
<td>3.605</td>
</tr>
<tr>
<td>2060</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0.295</td>
</tr>
<tr>
<td>1.75</td>
</tr>
<tr>
<td>3.605</td>
</tr>
<tr>
<td>3.203</td>
</tr>
<tr>
<td>2060</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>0.335</td>
</tr>
<tr>
<td>1.555</td>
</tr>
<tr>
<td>3.203</td>
</tr>
<tr>
<td>3.090</td>
</tr>
<tr>
<td>2060</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>0.40</td>
</tr>
<tr>
<td>1.50</td>
</tr>
<tr>
<td>3.090</td>
</tr>
<tr>
<td>2.925</td>
</tr>
<tr>
<td>2060</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>0.43</td>
</tr>
<tr>
<td>1.42</td>
</tr>
<tr>
<td>2.925</td>
</tr>
<tr>
<td>2.822</td>
</tr>
<tr>
<td>2060</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>0.44</td>
</tr>
<tr>
<td>1.37</td>
</tr>
<tr>
<td>2.822</td>
</tr>
</tbody>
</table>
APPENDIX D

Rope Speed Tests at 126 FPM

Crescent Type

<table>
<thead>
<tr>
<th>Weight</th>
<th>Percent scraper</th>
<th>Watt-sec, per gram rock</th>
<th>Gms, rock per gram scraper</th>
<th>Wt, dry mater, per pass, gms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1065</td>
<td>0</td>
<td>0.50</td>
<td>3.06</td>
<td>3.259</td>
</tr>
<tr>
<td>1065</td>
<td>5</td>
<td>0.62</td>
<td>2.56</td>
<td>2.726</td>
</tr>
<tr>
<td>1065</td>
<td>10</td>
<td>0.68</td>
<td>2.415</td>
<td>2.678</td>
</tr>
<tr>
<td>1065</td>
<td>15</td>
<td>0.71</td>
<td>2.47</td>
<td>2.652</td>
</tr>
<tr>
<td>1065</td>
<td>20</td>
<td>0.73</td>
<td>2.22</td>
<td>2.630</td>
</tr>
<tr>
<td>1440</td>
<td>0</td>
<td>0.525</td>
<td>1.98</td>
<td>2.851</td>
</tr>
<tr>
<td>1440</td>
<td>5</td>
<td>0.69</td>
<td>1.99</td>
<td>2.865</td>
</tr>
<tr>
<td>1440</td>
<td>10</td>
<td>0.71</td>
<td>1.98</td>
<td>2.847</td>
</tr>
<tr>
<td>1440</td>
<td>15</td>
<td>0.74</td>
<td>1.98</td>
<td>2.848</td>
</tr>
<tr>
<td>1440</td>
<td>20</td>
<td>0.76</td>
<td>1.78</td>
<td>3.106</td>
</tr>
<tr>
<td>1745</td>
<td>0</td>
<td>0.86</td>
<td>1.72</td>
<td>3.001</td>
</tr>
<tr>
<td>1745</td>
<td>5</td>
<td>0.87</td>
<td>1.71</td>
<td>2.984</td>
</tr>
<tr>
<td>1745</td>
<td>10</td>
<td>0.92</td>
<td>1.69</td>
<td>2.949</td>
</tr>
<tr>
<td>1745</td>
<td>15</td>
<td>0.95</td>
<td>1.685</td>
<td>2.940</td>
</tr>
<tr>
<td>1950</td>
<td>0</td>
<td>0.625</td>
<td>1.68</td>
<td>3.276</td>
</tr>
<tr>
<td>1950</td>
<td>5</td>
<td>0.77</td>
<td>1.625</td>
<td>3.169</td>
</tr>
<tr>
<td>1950</td>
<td>10</td>
<td>0.80</td>
<td>1.62</td>
<td>3.159</td>
</tr>
<tr>
<td>1950</td>
<td>15</td>
<td>0.79</td>
<td>1.625</td>
<td>3.163</td>
</tr>
<tr>
<td>1950</td>
<td>20</td>
<td>0.795</td>
<td>1.63</td>
<td>3.178</td>
</tr>
</tbody>
</table>
APPENDIX E

Rope Speed Tests at 191 FPM

Crescent Type

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1065</td>
<td>0</td>
<td>0.51</td>
<td>2.63</td>
<td>2.803</td>
</tr>
<tr>
<td>1065</td>
<td>5</td>
<td>0.58</td>
<td>2.60</td>
<td>2.770</td>
</tr>
<tr>
<td>1065</td>
<td>10</td>
<td>0.60</td>
<td>2.56</td>
<td>2.726</td>
</tr>
<tr>
<td>1065</td>
<td>15</td>
<td>0.62</td>
<td>2.50</td>
<td>2.664</td>
</tr>
<tr>
<td>1065</td>
<td>20</td>
<td>0.625</td>
<td>2.48</td>
<td>2.642</td>
</tr>
<tr>
<td>1440</td>
<td>0</td>
<td>0.47</td>
<td>2.09</td>
<td>3.010</td>
</tr>
<tr>
<td>1440</td>
<td>5</td>
<td>0.52</td>
<td>1.84</td>
<td>2.651</td>
</tr>
<tr>
<td>1440</td>
<td>10</td>
<td>0.53</td>
<td>1.72</td>
<td>2.480</td>
</tr>
<tr>
<td>1440</td>
<td>15</td>
<td>0.54</td>
<td>1.68</td>
<td>2.421</td>
</tr>
<tr>
<td>1440</td>
<td>20</td>
<td>0.56</td>
<td>1.66</td>
<td>2.390</td>
</tr>
<tr>
<td>1745</td>
<td>0</td>
<td>0.38</td>
<td>1.98</td>
<td>3.455</td>
</tr>
<tr>
<td>1745</td>
<td>5</td>
<td>0.45</td>
<td>1.76</td>
<td>3.073</td>
</tr>
<tr>
<td>1745</td>
<td>10</td>
<td>0.475</td>
<td>1.70</td>
<td>2.968</td>
</tr>
<tr>
<td>1745</td>
<td>15</td>
<td>0.475</td>
<td>1.66</td>
<td>2.898</td>
</tr>
<tr>
<td>1745</td>
<td>20</td>
<td>0.48</td>
<td>1.66</td>
<td>2.895</td>
</tr>
<tr>
<td>1950</td>
<td>0</td>
<td>0.395</td>
<td>1.70</td>
<td>3.432</td>
</tr>
<tr>
<td>1950</td>
<td>5</td>
<td>0.48</td>
<td>1.61</td>
<td>3.141</td>
</tr>
<tr>
<td>1950</td>
<td>10</td>
<td>0.50</td>
<td>1.56</td>
<td>3.045</td>
</tr>
<tr>
<td>1950</td>
<td>15</td>
<td>0.505</td>
<td>1.57</td>
<td>3.060</td>
</tr>
<tr>
<td>1950</td>
<td>20</td>
<td>0.52</td>
<td>1.575</td>
<td>3.068</td>
</tr>
</tbody>
</table>
APPENDIX F

Rope Speed Tests at 252 FPM

Crescent Type

<table>
<thead>
<tr>
<th>Weight</th>
<th>Percent</th>
<th>Scrape & Per</th>
<th>Gms. Rock Per</th>
<th>Wt. Dry Mater.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1065</td>
<td>0</td>
<td>0.47</td>
<td>2.29</td>
<td>2,439</td>
</tr>
<tr>
<td>1065</td>
<td>5</td>
<td>0.54</td>
<td>2.06</td>
<td>2,195</td>
</tr>
<tr>
<td>1065</td>
<td>10</td>
<td>0.557</td>
<td>2.038</td>
<td>2,171</td>
</tr>
<tr>
<td>1065</td>
<td>15</td>
<td>0.565</td>
<td>1.98</td>
<td>2,110</td>
</tr>
<tr>
<td>1065</td>
<td>15</td>
<td>0.577</td>
<td>1.93</td>
<td>2,057</td>
</tr>
<tr>
<td>1440</td>
<td>0</td>
<td>0.41</td>
<td>1.95</td>
<td>2,808</td>
</tr>
<tr>
<td>1440</td>
<td>5</td>
<td>0.49</td>
<td>1.50</td>
<td>2,160</td>
</tr>
<tr>
<td>1440</td>
<td>10</td>
<td>0.53</td>
<td>1.49</td>
<td>2,146</td>
</tr>
<tr>
<td>1440</td>
<td>15</td>
<td>0.54</td>
<td>1.45</td>
<td>2,090</td>
</tr>
<tr>
<td>1440</td>
<td>20</td>
<td>0.555</td>
<td>1.44</td>
<td>2,075</td>
</tr>
<tr>
<td>1745</td>
<td>0</td>
<td>0.36</td>
<td>2.05</td>
<td>3,577</td>
</tr>
<tr>
<td>1745</td>
<td>5</td>
<td>0.45</td>
<td>1.58</td>
<td>2,757</td>
</tr>
<tr>
<td>1745</td>
<td>10</td>
<td>0.46</td>
<td>1.56</td>
<td>2,722</td>
</tr>
<tr>
<td>1745</td>
<td>15</td>
<td>0.50</td>
<td>1.54</td>
<td>2,687</td>
</tr>
<tr>
<td>1745</td>
<td>20</td>
<td>0.51</td>
<td>1.52</td>
<td>2,653</td>
</tr>
<tr>
<td>1950</td>
<td>0</td>
<td>0.325</td>
<td>1.78</td>
<td>3,471</td>
</tr>
<tr>
<td>1950</td>
<td>5</td>
<td>0.39</td>
<td>1.64</td>
<td>3,198</td>
</tr>
<tr>
<td>1950</td>
<td>10</td>
<td>0.385</td>
<td>1.58</td>
<td>3,092</td>
</tr>
<tr>
<td>1950</td>
<td>15</td>
<td>0.41</td>
<td>1.58</td>
<td>3,081</td>
</tr>
<tr>
<td>1950</td>
<td>20</td>
<td>0.43</td>
<td>1.565</td>
<td>3,052</td>
</tr>
</tbody>
</table>
BIBLIOGRAPHY

Books

Periodicals

State Publications

Catalogs from Manufacturers

Sauerman Bros., Inc. Power Drag Scrapers. Catalog 19, Section A.
VITA

Georges J. Vigier, son of Rene F. and Marie L. (Blasine) Vigier, was born in Bastia (Corse) France on the 10th of October 1921, and is a French national.

He received the degrees of Bachelier es lettres and Bachelier es sciences from the University of Bordeaux in June 1938 and June 1939. After special studies in mathematics, physics, and chemistry, he passed successfully the competitive examination for admission at Ecole Nationale Superieure des Mines de Saint Etienne in July 1942. In November 1942 he joined the Free French Forces in North Africa. Commissioned as a lieutenant in the artillery regiment of the 2nd Moroccan Infantry Division he fought in Italy from November 1943 to July 1944. He landed then in southern France and went with the First French Army to Germany and Austria. Discharged in July 1945 he resumed his studies and graduated in June 1947 after two years spent at school instead of the three regular ones. He went then to work with Mines Domaniales de Potasse d'Alsace. By the end of January 1949 he proceeded to the United States where he held for one year an appointment as a Research Fellow at Missouri School of Mines and Metallurgy. His residence in France is 1 Rue Joseph Vogt Wittelsheim—Haut Rhin.