Lactose fermenting bacteria in the water supplies of the Rolla Quadrangle

Joe Beaty Butler

Follow this and additional works at: http://scholarsmine.mst.edu/masters_theses
Department: Civil, Architectural and Environmental Engineering

Recommended Citation

This Thesis - Open Access is brought to you for free and open access by the Student Research & Creative Works at Scholars' Mine. It has been accepted for inclusion in Masters' Theses by an authorized administrator of Scholars' Mine. For more information, please contact weaverjr@mst.edu.
LACTOSE FERMENTING BACTERIA

IN THE WATER SUPPLIES OF THE ROLLA QUADRANGLE

BY

JOE BRAY BUTLER

A THESIS SUBMITTED TO THE FACULTY OF THE MISSOURI SCHOOL OF MINES AND METALLURGY, IN PARTIAL FULFILLMENT OF THE WORK REQUIRED FOR THE DEGREE OF MASTER OF SCIENCE IN CIVIL ENGINEERING.

ROLLA, MISSOURI

1924

APPROVED BY ____________________________
FOREWORD.

The author is indebted to the following for help as noted:

To Dr. F. W. Shaw, for suggestions and advice in regards to this work.

To Mr. G. J. Hillar, for help and advice in connection with the securing of the samples in the field, and in the preparation of the various culture media.

To Messrs. W. F. Hauck and W. Mikell, for help in securing the field samples.
TABLE OF CONTENTS.

Introduction...Page 3.
Detailed Description of the 27 Pure Cultures.............. 14.
Preparation of Culture Media used in the Experiments... 41.
History of Water Sample Number 11............................. 46.
Water Sample Trips.. 49.
Detailed Description of Water Sample Sources............ 55.

TABLES: Numbers 1 to 17, pages 63 to 79 inclusive.

1. Data on the 27 pure cultures................................. 63.
2. Comparison & Classification of pure cultures........... 64.
3. Levine's Classification.. 65.
4. Follman and Sonn, Cincinnati............................... 66.
7. Data on 21 isolated (contaminated) cultures............. 69.
10, 11 & 12. Jackson's Classification, 104 cultures.. 72.
13 to 17. Maps, Bella Quadrangle............................. 75.
Explanations of Tables... 79.

Conclusions.

1. As to potability of water by the classifications.... 84.
2. Differential value of the tests............................. 85.

References... 86.
INTRODUCTION: SCOPE OF THIS STUDY.

I. Preliminary investigations. This includes the securing of 139 water samples from water sources in the Bella quadrangle, and inoculating 120 samples from these into Dunham's Lactose tubes and thereby getting lactose gas production checks on the field samples.

II. Confirmatory tests. This consisted in the isolation of lactose fermenters on Rosin-Methylene Blue Agar and checking of the cultures back through the lactose and then through dulcitole and saccharose so as to complete Jackson's Classification. 106 cultures were classified in this manner.

III. Running through a complete set of tests of pure cultures, so as to completely (as possible) identify them. 27 pure cultures were run through a complete set of tests.

THE FUNCTION OF THIS STUDY AND OF THE TESTS IS TO GAIN A DEFINITE KNOWLEDGE OF THE POTABILITY OF WATER SUPPLIES BY BACTERIOLOGICAL EXAMINATION METHODS.
Extracts from "Bacteria Fermenting Lactose and Their Significance in Water Analysis" by Max Levine.

These extracts are given here as they are very useful in stating the reasons for this study of Lactose Fermenting Bacteria.

I. Characteristics of the colon group of bacteria.

The bacterial analysis of water is an indirect and quantitative one. Specific pathogenic organisms are not sought nor are they likely to be detected even in a dangerous water. It devolves upon the analyst to interpret his findings and particular emphasis is placed upon the determination of the presence of the colon group.

The investigator and analyst should therefore be thoroughly acquainted with the characteristics, peculiarities and idiosyncrasies of the organisms in the group, particularly with reference to their distribution, viability, and differential reactions.

Bacterium Coli was first discovered by Eimerich from the feces of a cholera patient in 1884. It was soon recognized as a normal inhabitant of the intestinal tract of man and of other animals. For the past three decades the EHEX colon group of bacteria has been extensively studied by bacteriologists and sanitarians especially those interested in water supply and purification. Probably as much work has been done on this as on any other group of bacteria but there is not as yet an absolute agreement as to the limitations of this group.
Extracts from "Bacteria Fermenting Lactose and Their Significance in Water Analysis" by Max Levine.

The Colon group will therefore be considered to include non-saprophytic Gram negative bacilli which ferment lactose with the production of acid and gas and which are capable of growing aerobically.

V. The Colon Group as an Index of Pollution.

SAFE WATER. A safe water for human consumption may be defined as one which is free from harmful constituents important among which are disease producing microorganisms. The logical and most direct procedure to determine the potability and safety of a water would be to determine the presence or absence of pathogenic bacteria but unfortunately this task is an impossible one for routine and recourse must therefore be taken to an indirect index of the probable presence of harmful germs. Since the diseases transmissible through water are primarily of intestinal origin the detection of the presence of intestinal material naturally leads to the presumption that a potential danger exists, for if such material is present it is very probable and certainly possible that intestinal disease germs are also present.

A number of tests both chemical and bacteriological have been suggested as indicators of intestinal pollution. The Bacterial examination by reason of the large number of intestinal bacteria present in faces and sewage and the ease with which they may be detected in water, is a particularly delicate test.
Extracts from "Bacteria Fermenting Lactose and Their Significance in Water Analysis" by Max Levine.

V. Continued......

Three groups of bacteria have been regarded as indicators of pollution: The Colon Group, Sewage Streptococci, and Spore Forming Anaerobes.

An organism to be considered an ideal index of fecal pollution should have the following characteristics:

1. It should be distinctively and characteristic of human or animal intestinal origin.

2. It should be absent or extremely rare in nature outside of the intestinal tract.

3. It must be capable of easy and rapid detection.

4. Its incidence in water should bear some constant relation to the sanitary survey or our knowledge as to the probability of pollution, particularly with sewage.

5. It should be distinctly more viable and more resistant in water and to treatment than are the intestinal pathogens (B. Typhi, B. Dysenteriae, etc.), but not excessively so.

Such an ideal index is not available but the general consensus of opinion among English and American bacteriologists is favorable to the employment of the colon group for this purpose.
Extracts from "Bacteria Fermenting Lactose and their Significance in water analysis" by Max Levine.

V. Continued.

Although bacterial of this group are not restricted in habitat to the intestinal tract of man being characteristic also of the intestinal tract of the lower animals, it is nevertheless true that there is a correlation between the quantitative incidence of at least the coli section and known pollution. The whole group is easy of detection as will be seen by the following considerations. It is more viable than Bact. typhi but yet dies off relatively quickly; colon bacilli are present in relatively large numbers in water known to be polluted but only infrequently in natural supplies. A correlation has been established between the incidence of the colon group in drinking water and the typhoid fever rate in a community.

It might well be stated here that Bulletin 62 of the Engineering Experiment Station of the Iowa State College, which is the "Bacteria Fermenting Lactose and their Significance in Water Analysis" by Max Levine is the outstanding publication of the present day on the scientific aspect of sanitary bacteriology. With the exception of the Citrate Medium (by Koser) all other experiments of this investigation are based on this bulletin.
Culture Media Used: Reactions and their significance. pg.1.

1. Lactose broth in Durham's fermentation tubes. The
Coloni-Aerogenes group and the anaerobic spore forming
C1 Welchii are the lactose fermenters. The positive
presumptive test for pollution by sewage is to isolate
Gram negative, non-sporing, lactose fermenting (with gas)
rods from a sample of water. The absence of lactose
fermenters gives the water a clear indication of non-pollution.
But the finding of the above fermenters does not immediately
condemn the water but throws it under MI suspicion from
which it may sometimes be cleared. There are two methods
of following up this test. MI First, by identifying the
organisms in order to be sure of their origin as to whether
it is fecal or non-fecal. While 100% accuracy cannot be
obtained along this line still the indications have a high
correlation with sewage pollution. The second and practical
method has merely to do with the quantitative incidence as
the presence of large numbers of the colon group is a
very definite indication of an undesirable pollution.

2. Dextrose broth (gas formation by fermentation).
The colon group are also all dextrose fermenters but
there are other and non-lactose gas formers that give
this reaction so that lactose has the place as colon
group indicator.
Culture Media Used: Reactions and their Significance. pg 2.

3. Saccharose broth (Fermentation with gas production).
This reaction is considered as primary in MacConkey’s classification and secondary in Jackson’s and Levine’s.
As a differential test between the fecal and non-fecal groups this has little correlation and has been replaced by other tests.

4. Dulcitol broth (Fermentation with gas production).
This reaction is secondary in Levine’s and MacConkey’s classifications and is primary in Jackson’s as differential test. While its correlation is somewhat better than that of saccharose still it is less than others and is entitled to only a secondary place. The 27 pure cultures of this present study on an early batch of dulcitol produced gas in 21; only one culture, while in a repeat in a new batch about a month later 15 of the cultures produced gas but all 15 were uniformly barely 10% gas (by quantity) formers. Both batches were checked by other than the 27 pure cultures so that their contradictory nature is rather significant.

5. Salicin broth (Fermentation with gas production).
Flügler (1915) suggested salicin to replace dulcitol in the subdivision of coli like bacteria. It was shown to have a closer correlation. However the correlation of salicin with the Voges-Proskauer test in the 27 pure cultures was very poor.
Cultures Media Used: Reactions and their Significance, pg 3.

6. Motility. This has been assumed to be a differential factor with E. coli as motile and E. aerogenes (non-fecal) as non-motile. Levine found only 32% of 32 cultures from man to be motile. This was lower in sewage and higher from feces of animals. The writer did not obtain satisfactory tests from his Dextrose agar inoculations. The data on the 27 pure cultures was obtained by the hanging drop method.

21 out of 27 cultures being motile did not give a very close correlation with the Voges Proskauer reaction. These tests were carefully made and checked by experienced bacteriologists.

7. Gelatin liquefaction. E. Cloacae is a lactose fermenter, gelatin liquefier. None of the 27 cultures proved to be liquefiers though other cultures readily liquefied gelatin from the same batch.

This is an important reaction for the identification of the colony group. All of the 27 cultures gave the acid reaction. 11 gave complete coagulation, 9 gave partial and the remaining 7 gave no coagulation.

9. Indol. Production of Indol from Peptone. English practice rates this reaction high classing all indol formers as "typical E. coli". All of the pure cultures formed indol, with check media giving some negative reactions. This gave no correlation with other reactions.
Culture Media Used: Reactions and their Significance, pg 4.

10. Ratio of Carbon Dioxide to Hydrogen gas from dextrose.
The ratio of gas production of CO₂ to H₂ in B aerogenes has been found to be 2.0 while the ratio for B. coli is 1.0.
This has been proved to be a very constant reaction, but quantitative measurement requires a great deal of care.
If the culture stands too long the CO₂ is reabsorbed.
Using Smith tubes with the 27 pure cultures the writer found he had too small amounts of gas in 10 of the cultures to get gas measurement. Some of the measurements made on the remaining cultures were not satisfactory. Time did not permit the repeating of this test.

11. Methyl Red Reaction. This tests the acidity or alkalinity of an incubated culture in 0.5% dextrose-peptone di-sodium phosphate medium. B. coli will ferment enough acid to give an acid or positive reaction. The continued growth of B aerogenes breaks down acids and liberates H alkali thus giving a negative or alkaline reaction. This ranks second only to the Voges Proskauer reaction as a differentiating medium. A weakness of this test is that it is very dependent on exact adjustment of the media.
The tests of the 27 pure cultures gives this reaction as a close second to the Voges Proskauer reaction.
Culture Media Used: Reactions and their significance, pg 5.

"In the products of dextrose (glucose) decomposition by B. Aerogena a \(\beta \) crude glycol is formed which upon oxidation yields acetyl-methyl-carbinol a volatile reducing substance, which when mixed with potassium hydroxide in the presence of peptone, imparts an eosin-like coloration to the mixture on standing. (Above is quotation from Levine). This reaction is given by B. aerogenes but not by B. coli. Levine sums the advantages of this reaction as follows: II

1. Any peptone medium in which the organisms will grow and which contains glucose (dextrose) (in a wide range of concentration) is suitable. It is preferable, however, to have the medium as free from color as possible.

2. The reaction may be obtained after 14 to 24 hours incubation at 30 degrees or 37 degrees C.

3. The brand of peptone employed does not affect the intensity of the reaction.

A comparison of the Voges Proskauer, Methyl Red, Uric Acid, and Citrate Medium indicated that the Voges Proskauer reaction gives the best correlation with the Methyl Red a close second and the other two together and far behind.
Culture Media Used: Reactions and their Significance, pg. 6.

13. Uric Acid. B aerogenes can utilize nitrogen from uric acid, while E. coli cannot. On the 27 pure cultures this reaction gave a correlation of 18 out of 22 cultures as determined by a majority of V.P., M.R. CITRATE, Uric acid reactions.

Citrate medium has been used to differentiate the coli and aerogenes types. A wide variety of tests completed by Koser seems to show an almost exact correlation between citrate utilization and both the fecal and non-fecal aerogenes bacilli. Of the soil cultures with Citrate 97.2% positive the Methyl Red positive and Voges Proskauer negative reactions were 54.7%. This would seem to show that citrate utilization should control over the M.R. and V.P. reactions in indicating a culture to be of non-fecal origin. This would change pure cultures #10, #21, #24 & #24 from fecal to non-fecal, and would establish #16, #19, #20, & #23 as non-fecal.

15. Endo Agar (Levine). "Levine suggested a modified and simplified Endo medium which requires no adjustment of reaction and which need not be filtered. Aside from simplicity of preparation, an advantage is claimed that E. coli may be differentiated from B. aerogenes. The former possesses a distinct metallic sheen, the colonies are flat and button like, and about 2 or 3 mm in diam.; whereas the latter produces considerably larger colonies which are convex and a metallic sheen is rarely observed" (pg 62, Bull. 62, Levine '21)
Culture Media Used: Reactions and their Significance, pg. 10.
Eosin-Methylene Blue Agar (Levine, 1917).

Differentiation: (Table XXVII, Bulletin 62, Iowa State)
Bacillus coli: Size—Well isolated colonies are 1-3 mm in diam.
Confluence—Neighboring colonies show little tendency to
run together. Elevation—Colonies slightly raised; surface
flat or slightly concave, rarely convex. Appearance by
transmitted light—Dark almost black centers which extend 50
more than 1 across the diameter of colony; internal K
structure of central dark portion hard to discern.
Appearance by reflected light—Colonies dark, button-like,
often concentrically ringed with a greenish metallic sheen.

Bact. aerogenes: Size—Well isolated colonies are larger
than coli; usually 4-6 mm in diameter or more. Confluence—
Neighboring colonies run together quickly. Elevation—
Colonies remarkably raised and markedly convex; occasionally
the center drops precipitately. Appearance by transmitted
light—Centers deep brown; not as dark as B. coli and K
smaller in proportion to the rest of the colony. Striated
internal structure often observed in young colonies.
Appearance by reflected light—Much lighter than B. coli.

Metallic sheen not observed except occasionally in depressed
center when such is present.
Practically all of the 150 field samples obtained were run
through this media but the differentiation was not noted
in the data. “The advantages claimed for the media is the
1. Ease preparation. 2. Relative permanency. 3. Value as
differentiating medium.”
Pure Culture No. 1 (11-1a)

Source: Spring on rainy day.

Short Rods, Gram negative. Motile.

Gelatin slab: No liquefaction.

Agar Slant: Abundant white moist growth.

Litmus Milk: Acid, no (XX) coagulation.

Gas in dextrose, lactose, dulcitol, and salicin.

CO₂ and H₂ gas in equal quantities in glucose.

Methyl Red negative.

Voges Proskauer positive.

Uric Acid negative.

Growth in Citrate medium in 3 days.

Indol positive.

Classification:

MacConkey: E. Coli.

Levine: Atypical E.

Bahlman & Sohn: Atypical D (Gel -).

Winslow, Kligler & Rothberg: Atypical.

Bergey: Aerobacter Archibald (Salicin -)

Citrate Medium: Fecal.

Methyl Red: Non Fecal.

Voges Proskauer: Non Fecal
Pure Culture No. 2. (11-3).
Source: Spring, on rainy day.
Short, Gram negative, non-motile rods.
Gelatin stab: No liquefaction.
Agar Slant: Abundant, white, moist growth.
Litmus Milk: Acid, partial coagulation.
Gas in Dextrose, lactose, Dulcitol and salicin.
Ratio of CO₂ to H₂ gas is 1.5.
Methyl Red negative.
Voges Proskauer positive.
Uric Acid negative.
Growth in Citrate medium in 3 days.
Indol positive.
Classification.
MacConkey: B. Coli.
Jackson: B. Communis.
Levine: Atypical D.
Bahlman & Sohn: Atypical D (Gel -).
Winslow, Kligler and Rothberg: Atypical.
Bergey: Atypical.
Citrate Medium: Fecal.
Methyl Red: Non Fecal.
Voges Proskauer: Non Fecal.
Pure Culture, No. 3. (407 c.1g.)

Source: Stream, two days after a rain.

Short, Gram negative, motile rods.

Gelatin Stab: No liquefaction.

Agar Slant: Abundant, white, moist growth.

Litmus Milk: Acid. No XXXXX coagulation.

Gas in dextrose, lactose, saccharose, dulcitol & salicin.

CO2 and H2 gas ratio in glucose. Not enough gas in tube.

Methyl Red positive.

Voges Proskauer ¥ negative.

Uric Acid negative.

No growth in Citrate medium in 21 days.

Indol positive.

Classification.

MacConkey: B. Neapolitanum.

Jackson: B. Communier.

Levine: B. Communier.

Bahlman and Sohn: B. Celi.

Winslow, Kligler & Rothberg: Atypical.

Citrate Medium: Non Fecal.

Methyl Red: XXXXX Fecal.

Voges Proskauer: Fecal.
Pure Culture, No. 4. (407aer).

Source: Stream, two days after rain.

Short, Gram negative, motile rods.

Celanin Stab: No liquefaction.

Agar Slant: Abundant, white, moist growth.

Litmus Milk: Acid and coagulation.

Gas in dextrose, lactose, saccharose and salicin.

Twice as much CO₂ gas as H₂ gas in glucose.

Methyl Red negative.

Voges Proskauer positive.

Uric Acid positive.

Growth in Citrate medium in 3 days.

Indol positive.

Classification:

MacConkey: B. Aerogenes.

Jackson: B. Aerogenes.

Levine: Atypical C.

Bahlman and Sohn: B. Aerogenes.

Winslow, Kligler and Rothberg: Atypical.

Bergey: Atypical.

Citrate Medium: Fecal.

Methyl Red: Non Fecal.

Voges Proskauer: Non Fecal.
Pure Culture, No. 5. (512).
Source: Stream, two days after rain.
Short, Gram negative, motile rods.
Gelatin: No liquefaction.
Agar Slant: Abundant, white, moist growth.
Litmus Milk: Acid and coagulation.
Gas in dextrose, lactose, saccharose and salicin.
CO2 and H2 gas ratio is 2.3.
Methyl Red negative.
Voges Proskauer positive.
Uric Acid positive.
Growth in Citrate medium in 2 days.
Indol positive.
Classification:
MacConkey: B. Aerogenes.
Jackson: B. Aerogenes.
Levine: Atypical C.
Bahlman & Sohn: B. Aerogenes.
Winslow, Kligler & Rothberg: Atypical.
Bergey: Atypical.
Citrate Medium: Fecal.
Methyl Red: Non Fecal.
Voges Proskauer: Non Fecal.
Pure Culture, No. 6. (607-2)
Source: Spring, on rainy day.
Short, Gram negative, motile rods.
Gelatin Stab: No liquefaction.
Agar Slant: Abundant, white, moist growth.
Litmus Milk: Acid and coagulation.
Gas in dextrose, lactose, saccharose and dulcitol.
Too small amount in dextrose (glucose) for CO₂ & H₂ gas ratio.
Methyl Red positive.
Voges Proskauer: negative.
Uric Acid negative;
No growth in Citrate medium in 21 days.
Indol positive.
Classification.
MacConkey: B Neapolitanum.
Jackson: B. Communior.
Levine: B. Communior.
Bahlman & Sihn: F. Coli.
Winslow, Kligler & Rothberg: B. Communior.
Bergey: Escherichia Communior.
Citrate Medium: Non Fecal.
Methyl Red: Fecal.
Voges Proskauer: Fecal.
Pure Culture, No. 7 (638-1).

Source: Spring, on rainy day.

Short, Gram negative, non-motile rods.

Gelatin Stab: No liquefaction.

Agar Slant: Abundant, white, moist growth.

Litmus Milk: Acid, No coagulation.

Gas in dextrose, lactose, saccharose, dulcitol and salicin.

Ratio CO₂ to H₂ gas 0.2.

Methyl Red positive.

Voges Proskauer positive.

Uric Acid positive.

Growth in Citrate medium in 3 days.

Indol positive.

Classification.

MacConkey: B. Neapolitanum.

Jackson: B. Communior.

Levine: Atypical S.

Pahlman & Sohn: Atypical B.

Winslow, Kligier & Rothberg: Atypical.

Bergey: Aerobacter oxycoccus (salicin plus).

Citrate Medium: Fecal.

Methyl Red: Fecal.

Voges Proskauer: Non Fecal.
Pure Culture, No. 8 (61C).

Source: Spring, on rainy day.

Short, Gram negative, motile rods.

Gelatin Stab: No liquefaction.

Agar Slant: Abundant, white, moist growth.

Litmus Milk: Acid, slight coagulation.

Gas in dextrose, lactose, saccharose, dulcitol and salicin.

Ratio of CO2 and H2 gas is 0.3.

Methyl Red positive.

Voges Proskauer positive.

Uric Acid positive.

Growth in Citrate medium in 3 days.

Indol positive.

Classification.

MacConkey: E Neapolitanum.

Jackson: E. Communior.

Levine: Atypical E.

Pahlman & Sohn: Atypical E.

Winslow, Kligler & Rothberg: Atypical.

Bergey: Atypical.

Citrate Medium: Fecal.

Methyl Red: Fecal.

Voges Proskauer: Non Fecal.
Pure Culture, No. 9 (611).
Source: Spring, on rainy day.
Short, Gram negative, motile rods.
Gelatin Stab: No liquefaction.
Agar Slant: Abundant, moist growth. White, turning brown.
Litmus Milk: Acid, slight coagulation.
Gas in dextrose, lactose, saccharose, dulcitol & salicin.
CO₂ and H₂ gas in equal amounts from dextrose(sucrose).
Methyl Red negative.
Voges Proskauer positive.
Uric Acid positive.
No growth in Citrate medium in 21 days.
Indol faintly positive.
Classification:
Mac Conkey: B. Neapolitanum.
Jackson: B. Communior.
Levine: Atypical C.
Bahlman & Sohn: B. Aerogenes.
Winslow, Kligler & Rothberg: Atypical.
Bergey: Atypical.
Citrate Medium: Non Fecal.
Methyl Red: Non Fecal
Voges Proskauer: Non Fecal
Uric Acid: Non Fecal.
Pure Culture, No. 10 (G12).
Source: Spring, on rainy day.
Short, Gram negative, Non-motile rods.
Gelatin Stab: No liquefaction.
Agar Slant: Abundant, white, moist growth.
Litmus Milk: Acid, no coagulation.
Gas in dextrose, lactose, dulcitol and salicin.
Too little amount of gas in tube for CO2 & H2 ratio.
Methyl Red positive.
Voges Proskauer negative.
Uric Acid negative.
Growth in Citrate medium in 4 days.
Indol positive.
Classification:
MacConkey: E. Coli.
Jackson: E. Communis.
Levine: E. Coli.
Bahlman & Sohn: E. Coli.
Winslow, Kligler & Rothberg: Atypical.
Bergey: Atypical.
Citrate Medium: Fecal.
Methyl Red: Fecal.
Voges Proskauer: Fecal
Uric Acid: Non Fecal.
Pure Culture, No. 11 (G15-1).

Source: Spring, on rainy day.

Short, Gram negative, non-motile rods.

Gelatin Stab: No liquefaction.

Agar Slant: Abundant, white, moist growth.

Lactose Milk: Acid. No coagulation.

Gas in dextrose, lactose, dulcitol and salicin.

Too little amt. gas in dextrose for CO2 & H2 gas ratio,

Methyl Red negative.

Voges Proskauer positive.

Uric Acid positive.

Growth in Citrate medium in 2 days.

Indol positive.

Classification:

MacConkey: B. Aerogenes.

Jackson: B. Aerogenes.

Levine: B. Aerogenes.

Pahlman & Sohn: B. Aerogenes.

Winslow, Kligler & Rothberg: Atypical.

Bergey: Atypical.

Citrate Medium: Fecal.

Methyl Red: Non Fecal.

Voges Proskauer: Non Fecal.

Uric Acid: Non Fecal.
Pure Culture, No. 12 (701 mm).
Source: Stream, two days after a rain.
Short, Gram negative, motile rods.
Gelatin Stab: No liquefaction.
Agar Slant: Abundant, moist growth. White, turning to brown.
Litmus Milk: Acid, slight coagulation.
Gas in dextrose, lactose, saccharose, dulcitol & salicin.
No CO2 and H2 gas ratio in glucose. Not enough gas.
Methyl Red positive.
Voges Proskauer H2K negative.
Uric Acid positive.
No growth in Citrate medium in 21 days.
Indol positive.
Classification:
MacConkey: B. Neapolitanum.
Jackson: P. Communior.
Levine: Atypical N.
Ehleman & Sohn: Atypical U P O.
Winslaw, Kligler & Rothberg; B. Neapolitanum.
Berger: Escherichia Communior.
Citrate Medium: Non Fecal.
Methyl Red: Fecal.
Voges Proskauer: Fecal.
Pure Culture, No. 13 (703 cm).

Source: Stream, two days after a rain.

Short, Gram negative, motile rods.

Gelatin Slab: No liquefaction.

Agar Slant: Abundant, white, moist growth.

Litmus Milk: Acid. Coagulated.

Gas in dextrose, lactose, saccharose, dulcitol & salicin.

No CO2 & H2 gas ratio in glucose, too little gas.

Methyl Red positive.

Voges Proskauer negative.

Uric Acid negative.

No Growth in Citrate medium in 21 days.

Indol positive.

Classification:

MacConkey: B. Neapolitanus.

Jackson: B. Communior.

Levine: B. Communior.

Bahlman & Sohn: B. Coli.

Winslow, Kliger & Rothberg: B. Neapolitanum.

Bergey; Escherichia Communior.

Citrate Medium: Non Fecal.

Methyl Red: Fecal

Voges Proskauer: Fecal.

Uric Acid: Fecal.
Pure Culture, No. 14 (706 sm).

Short, Gram negative, motile rod.

Gelatin Stab: No liquefaction.

Agar Slant: Abundant, white, moist growth.

Litmus Milk: Acid. Coagulation.

Gas in dextrose, lactose, dulcitol and salicin.

No ratio of CO2 to H2 gas. Too little gas in dextrose tube.

Methyl Red positive.

Voges Proskauer negative.

Uric Acid negative.

No growth in Citrate medium in 21 days.

Indol positive.

Classification:

MacDonkey: B. Coli.

Jackson: B Communis.

Levine: B. Coli.

Bahlman and Sohn: B. Coli.

Winslow, Kligler & Rothberg: B. Neapolitanum.

Bergey: Escherichia Coli.

Citrate Medium: Non Fecal.

Methyl Red: Fecal.

Voges Proskauer: Fecal.

Uric Acid: Fecal.
Pure Culture, No. 16 (708 am).

Source: Stream, two days after a rain.
Short, Gram negative, motile rods.
Gelatin Stab: No liquefaction.
Agar Slant: Abundant, white, moist growth.
Litmus Milk: Acid. Slight coagulation.
Gas in dextrose, lactose and saccharose.
Ratio of CO₂ to H₂ gas is 0.7.
Methyl Red negative.
Voges Proskauer positive.
Uric Acid negative.
Growth in Citrate medium in 2 days.
Indol positive.

Classification:
MacConkey: P. Aerogenes.
Jackson: B. Aerogenes.
Levine: Atypical J.
Dahlinman and Bohn: Atypical D (Gel -).
Winslow, Kligler & Rothberg: Atypical.
Citrate Medium: Fecal.
Bergey: Escherichia Ichthyesmia.
Methyl Red: Non Fecal.
Voges Proskauer: Non Fecal.
Pure Culture, No. 16 (709 endo).
Source: Spring, two days after a rain.
Short, Gram negative, motile rods.
Gelatin Stab: No liquefaction.
Agar Slant: Abundant, white, moist growth.
Litmus Milk: Acid. Partial coagulation.
Gas in dextrose and lactose.
Not enough gas in dextrose tubes for CO2 to H2 ratio.
Methyl Red positive.
Voges Proskauer negative.
Uric Acid positive.
Growth in Citrate medium in 2 days.
Indol positive.
Classification:
MacConkey's: E. Acidi-lacti.
Jackson: E Acidi-lacti.
Levine: Atypical A.
Bahlman & Sohn: Atype U P C.
Winslow, Kligler & Rothberg: Atypical.
Bergey: Escherichia Pseudodysenteriae (Lit Milk acid).
Citrate Medium: Fecal.
Methyl Red: Fecal.
Voges Proskauer: Fecal.
Uric Acid: Non Fecal.
Pure Culture, No. 17 (710-1).

Source: Stream, two days after a rain.

Short, Gram negative, motile rods.

Gelatin Stab: No liquefaction.

Agar Slant: Abundant, white, moist growth.

Litmus Milk: Acid, coagulated.

Gas in dextrose, lactose, saccharose and salicin.

Ratio CO2 to H2 gas is 0.7.

Methyl Red negative.

Voges Proskauer positive.

Uric Acid positive.

Growth in Citrate medium in 3 days.

Indol Positive.

Classification.

MacConkey: E. Aerogenes.

Jackson: E. Aerogenes.

Levine: Atypical G.

Rahlman & Sohn: E Aerogenes.

Winslow, Kligler & Röthberg: Atypical.

Bergey: Atypical.

Citrate Medium: Fecal.

Methyl Red: Non Fecal.

Voges Proskauer: Non Fecal.

Uric Acid: Non Fecal.
Pure Culture, No. 18 (710-2).
Source: Stream, two days after a rain.
Gram, Gram negative, motile rods.
Celatin Stab: No liquafaction.
Agar Slant: Abundant, white, moist growth.
Litmus Milk: Acid. Coagulated.
Gas in dextrose, lactose, saccharose, dulcitol & Salicin.
Ratio of CO2 To N2 gas is 1.0.
Methyl Red negative.
Voges Proskauer positive.
Uric Acid positive.
Growth in Citrate medium in 2 days.
Indol positive.
Classification:
MacConkey: B Neapoli&orum.
Jackson: E. Communior.
Levine: Atypical C.
Bahlman & Sohn: B. Aerogenes.
Winslow, Kligler, & Rothberg: Atypical.
Bergey: Atypical.
Citrate Medium: Fecal.
Methyl Red: Non Fecal.
Voges Proskauer: Non Fecal.
Uric Acid: Non Fecal.
Pure Culture, No. 19 (302).

Source: Spring, three days after a rain.

Short, Gram negative, motile rods.

Gelatin Stab: No liquefaction.

Agar Slant: Abundant, white, moist growth.

Litmus Milk: Acid. Partial coagulation.

Gas in dextrose, lactose.

Not enough gas for CO2 and H2 ratio in dextrose.

Methyl Red positive.

Voges Proskauer negative.

Uric Acid positive.

Growth in Citrate medium in 2 days.

Indol Positive.

Classification:

MacConkey: B. Acidi-lacti.

Jackson: B. Acidi-lacti.

Levine: Atypical A.

Dahlman & Sogn: Atypical U P C.

Winslow, Kligler & Rothberg: Atypical.

Bergey: Pseudodysentericae, Escherichia (Acid Litmus Milk).

Citrate Medium: Non-Fecal.

Methyl Red: Fecal.

Voges Proskauer: Fecal

Uric Acid: Non Fecal.
Pure Culture: 20 (CO2).
Source: Spring, three days after rain.
Shorn, Gram negative, motile rods.
Gelatin Slab: No liquefaction.
Agar Slant: Abundant, white, moist growth.
Litmus Milk: Acid, coagulation.
Gas in dextrose and lactose.
Ratio CO2 to N2 gas is 2.3
Methyl Red positive.
Voges Proskauer positive.
Uric Acid negative.
Growth in Citrate medium in 3 days.
Indol positive.
Classification:
MacConkey: B. Acid-lacti.
Jackson: B. Acid-lacti.
Levine: Atypical I.
Pahlman & Sohn: Atypical A.
Winslow, Kligler & Rothberg: Atypical.
Persey: Escherichia Neapolitanus.
Citrate Medium: Non-Fecal
Methyl Red: Fecal.
Voges Proskauer: Non Fecal.
Uric Acid: Fecal.
Pure Culture, No. 21 (807aer)

Source: Spring, three days after a rain.
Short. Gram negative. motile rods.
Gelatin Stab. No liquefaction.
Agar Slant: Abundant, white, moist growth.
Litmus Milk: Acid. No coagulation.
Gas in dextrose and lactose.
Ratio CO2 to H2 gas is 0.0
Methyl Red positive.
Voges Proskauer negative.
Uric Acid negative.
Growth in Citrate medium in 3 days.
Indol positive.
Classification:
MacConkey, B. Acid-lacti.
Jensen, B Acid-lacti.
Levine, B Acid-lacti.
Tahman & Sohn, B. Coli.
Wenlock, Kligler & Rothberg: Atypical.
Bergey: Escherichia Pseudodysenteriae (Lit Milc Acid).
Citrate Medium: Non-Fecal
Methyl Red: Fecal.
Voges Proskauer: Fecal.
Uric Acid: Fecal.
Pure Culture, No. 22 (Ellner).

Source: Spring, three days after a rain.

Short, Gram NEGATIVE negative, motile rods.

Gelatin Stab: No liquefaction.

Agar Slant: Abundant, moist growth. White, turning to brown.

Litmus Milk: Acid. Coagulation.

Gas in dextrose, lactose and salicin.

Ratio CO2 to H2 gas is 1.5

Methyl Red negative.

Voges Proskauer positive.

Uric Acid positive.

Growth in Citrate medium in 2 days.

Indol positive.

Classification:

MacConkey: B. Acidilacti.

Jackson: B. Acidilacti.

Levine: Atypical N.

Buhler & Gohn: B. Aerogenes.

Winslow, Kligler & Rothber: Atypical.

Bergey: Atypical.

Citrate medium: Non-Fecal.

Methyl Red: Non-Fecal.

Voges Proskauer: Non-Fecal.

Uric Acid: Non-Fecal.
Pure Culture, No. 23 (Ellendor).

Source: Spring, three days after a rain.

Short, Gram negative, non-mobile rods.

Gelatin Stab: No liquefaction.

Agar Slant: Abundant, white, moist & growth.

Milk: Acid, coagulation.

Gas in dextrose and lactose.

Not enough gas for CO2 to H2 ratio in dextrose.

Methyl Red positive.

Voges-Proskauer negative.

Uric Acid negative.

Growth in Citrate Medium in 14 days.

Indol positive.

Classification:

MacConkey: B Acidi-lacti.

Jackson: B Acidi-lacti.

Levine: B Acidi-lacti.

Fehlman & Schne: B. Coli.

Winslow, Kligler & Rothberg: Atypical.

Bergey: Escherichia Vesiculosa.

Citrate Medium: Non-Fecal.

Methyl Red: Fecal.

Voges-Proskauer: Fecal.

Uric Acid: Fecal.
Pure Culture, No. M11 24 (812).

Source: Spring, three days after a rain.

Short, Gram negative, non-motile rods.

Gelatin Stab: No liquefaction.

Agar Slant: Abundant, white, moist growth.

Litmus Milk: Acid. Partial coagulation.

Gas in dextrose, lactose, dulcitol & salicin.

Not enough dextrose gas for CO2 to N2 gas ratio.

Methyl Red positive.

Voges Proskauer negative.

Uric Acid negative.

Growth in Citrate medium in 3 days.

Indol positive.

Classification:

MacConkey: E. Coli.

Jackson: E. Coli marcescens.

Levine: E. Coli.

Bahlman & Soltz: E. Coli.

Wiselow, Kligler & Rothberg: E. Coli.

Pergay: Escherichia Coli.

Citrate Medium: Non-Fecal.

Methyl Red: Fecal.

Voges Proskauer: Fecal.

Uric Acid: Fecal.
Pure Culture, No. 28 (204).
Source: Spring, five days after a rain.
Short, Gram negative, motile rods.
Cetatin Stab: No liquefaction.
Agar Slant: Abundant, white, moist growth.
Lactose Milk: Acid, Coagulation.
Gas in dextrose, lactose, saccharose, dulcitol & salicin.
Ratio 0.02 to 0.2; gas in dextrose is 0.5
Methyl Red positive.
Voges Proksauer negative.
Ure Acid positive.
Growth in Citrate medium in 2 days.
Indol positive.
Classification:
MacConkey: E. Neapolitanus.
Jackson: E. Communior.
Levine: Atypical E.
Bahlman & Sohn: Atypical U P C.
Winslow, Kligler & Rothberg: E. Neapolitanus.
Bergey: Escherichia Communior.
Citrate Medium: Non-Fecal.
Methyl Red: Fecal.
Voges Proksauer: Fecal.
Ure Acid: Non-Fecal.
Pure Culture, No. 26 (207).

Source: Stream, five days after a rain.

Short, Gram negative, motile rods.

Celatin Stab: No liquefaction.

Agar Slant: Abundant, white, moist growth.

Litmus Milk: Acid. No coagulation.

Gas in dextrose, lactose,

Saccharose & salicin.

Ratio of CO2 to H2 gas in dextrose is 0.3

Methyl Red negative.

Voges Proskauer negative.

Uric Acid positive.

Growth in Citrate medium in 2 days.

Indol positive.

Classification:

MacConkey: E. Coli.

Jackson: E. Coli.

Levine: Atypical E.

Bahlman & Soin: Atypical E.

Winlow, Kligler & Rothberg: Atypical.

Pergey: Escherichia Pseudocoloides.

Citrate Medium: Non-Fecal.

Methyl Red: Non Fecal.

Voges Proskauer: Fecal.

Uric Acid: Non Fecal.
Pure Culture, No. 27 (920).

Source: Stream, five days after rain.

short, gram negative, non-motile rods.

Gelatin Stab: No liquefaction.

Agar Slant: Abundant, white, moist growth.

Litmus Milk: Acid. Partial coagulation.

Gas in dextrose, lactose, saccharose, adolotel & salicin.

Ratio of CO2 to H2 gas in dextrose is 0.0

Methyl Red positive.

Voges Proskauer: negative.

Uric acid negative.

No growth in Citrate Medium in 21 days.

Indol positive.

Classification:

MacConkey: B. Nepsolitanum.

Jackson: B. Communior.

Levine: N. Nepsolitanum.

Baltimore & Sonn: E. Coli.

Windlow, Kigler & Rothberg: Atypical.

Bergey: Escherichia Communior (Non-motile).

Citrate Medium: MRB Fecal.

Methyl Red: Fecal.

Voges Proskauer: Fecal.

Uric Acid: Fecal.
Culture Media Used in the Experiments.

1. Agar Slant.

Weigh out 1.5 grams of agar agar; 1 gram of peptone and 0.2 gram of Na₂HPO₄.

Dissolve agar in 50 cc of tap water.

Dissolve peptone and Na₂HPO₄ in 50 cc of tap water.

When both are completely dissolved, allow to cool and filter broth thru filter paper. Then mix, filter thru cotton plug, tube, plug and sterilize in autoclave under 15 pounds pressure for 15 minutes.

2. Eosin-Methylene Blue Agar.

1. Prepare agar in the usual way and sterilize in amounts of 100 cc in flasks.

2. To 100 cc of hot fluid agar add 1 gram lactose, 2 cc of 2% Eosin, and 2 cc of 1/2% Methylene Blue. Mix thoroughly.

Pour into sterilized petri disher and inoculate within 24 hrs.

3. Endo Agar. (After Levine's Simplified Endo's Medium)

1. Prepare agar as in Eosin-Methylene Blue Agar.

2. To 100 cc of melted agar add 1 gram lactose, 0.5 cc of 10% (saturated) alcoholic solution of basic fuchsin, and 2.5 cc of freshly prepared 10% sodium sulphite solution.

Pour into plates. Inoculate **NEATLY** in ordinary way.
Culture Media Used in Experiments. Page 2.

4. Hesse Agar.

Weigh out 1/2 gram of agar agar, 1 gram of peptone, and 0.2 gram Na₂HPO₄. Dissolve agar in 50 cc of tap water. Dissolve peptone and salt in 50 cc of tap water. When both are completely dissolved, allow MIXED broths to cool and filter thru filter thru filter paper. Then mix, filter thru cotton plug, tube, plug and sterilize in autoclave at 15 lbs. for fifteen minutes.

4a. Hesse Agar.

1. Wash agar by a 24 hour soak in water. Dissolve 1/2 gram in 50 cc of water.

2. Dissolve 1 gram of peptone and 0.2 gram of Na₂HPO₄ in 50 cc of tap water. Heat at 60 degrees Centigrade until dissolved and let stand till liquid is cold. Filter thru filter paper. Add this broth to hot agar solution.

5. Lactose Broth.

Weigh out 1 gram of lactose, 1 gram of peptone and 0.2 gram of Na₂HPO₄. Dissolve in 100 cc of tap water. Cool. Filter thru filter paper. Tube and sterilize in autoclave under 15 pounds for 15 minutes.

6. Ducleitol.

Made as lactose. Substitute 0.1 gram of ducleitol for 1 gram of lactose.

7. Saccharose (Sucrose).
 Made the same as lactose. Substitute 1 gram of saccharose for 1 gram of lactose.

8. Salicin.
 Made the same as lactose. Substitute 0.1 gram of salicin for 1 gram of lactose.

9. Dextrose (Glucose).
 Made the same as lactose. Substitute 1 gram of dextrose for 1 gram of lactose.

10. Gelatin (For gelatin stab).
 Weigh out 12.5 grams of gelatin and 1 gram of peptone. Dissolve gelatin in 50 cc of tap water, being careful not to burn gelatin. Dissolve peptone in 50 cc of tap water. When completely dissolved, allow broth to cool, filter through filter paper, and mix.
 Take 5 cc sample and titrate with 5/20 NaOH until neutral to phenol red. From the amount required, calculate the amount necessary for the remaining 95 cc, and add the same.
 Filter through cotton plug, tube, plug, and sterilize 15 pounds for 15 minutes.
 Place tubes in cold water after sterilization until gelatin solidifies.

11. Litmus Milk.

Dissolve 10.5 grams of Bacto dehydrated litmus milk in 100 cc of distilled water. Tube, plug and sterilize in the autoclave 15 lbs. for 15 minutes.

Weigh out 1 gram peptone and 0.2 gram of Na2HPO4 and dissolve in 100 cc of tap water. Allow to cool. Filter thru filter paper, tube, plug, and sterilize in autoclave at 15 pounds for 15 minutes.

These were inoculated from the pure cultures and incubated at 37 degrees Centigrade for 5 days.

To the 5 day culture is added 1 cc of 10% solution of H2SO4 and then 1 cc of 1/5000 Potassium Nitrate is added so as to form a layer on the surface. If Indol is present, a red ring will develop at the junction of the nitrite and acidified peptone. This should show up within an hour.

Prepared the same as Dextrose (#0) but 0.5 gram instead of 1 gram of dextrose is used.

To a 5 day incubated (37 C) broth culture add a few drops of Methyl Red indicator. A yellow coloration indicates alkalinity or a negative reaction. A red coloration denotes acidity or a positive test.

Distilled ammonia free water 1000 cc
NaCl 5 gram
MgSO4 0.2 Gram
CaCl 0.1
Na2HP04 1.0
Glycerol 30.1
Uric Acid 0.5

This gives a colorless and clear medium. Tube, plug, and sterilize at 15 pounds for 15 minutes.

15. Smith Tube Dextrose Broth for CO2 and N2 gas ratio.

Use 1% dextrose broth as made in # 9.

16. Citrate Medium. (Koser #1).

NaCl ... 5 gram; MgSO4 ... 2 gram; (NH4)H2PO4 ... 1.0 gram.
2 gram Sodium Citrate (2.77 grams Sodium Citrate 5/ H2O).
in 1000 cc distilled water. Koser states that the above to be PH 6.7 to 6.9. (NH4)H2PO4 was not available so
(NH4)2HP04 was substituted. Upon titration the substitute media was found to be the same as the suggested(or Std.)
media(PH 6.7 to 6.9).

HISTORY OF WATER SAMPLE NUMBER 11.

Water Sample No. 11 was taken from a very small, housed, dry-weather spring, West side of Little Beaver road and under a high ridge, in N. E. 1/4 Sec. 19-37-6. Sample taken at 2:30 P. M. Saturday, November 5, 1926, after a nine hour rain in the early morning.

11-A. 1 c.c. sample inoculated into Durham's fermentation tube of lactose broth at 4 P. M. November 5, (same day). No gas at 24 hrs., 5% gas at 46 hrs. and 10% gas at 8 days.

11-B. At 2 P. M. November 6, an Eosin Methylene-Blue Agar slant was inoculated from 11-A. At 24 hrs. no growth. Later, a slight growth resembling neither B. Coli nor E. Aerogenes groups.

11-C. At 2 P. M. November 6, an Eosin Methylene-Blue Agar slant was inoculated from 11-A. This grew but later seemed to be contaminated.

11-D. At 4 P. M. November 8, plant from 11-B into lactose fermentation tube. No gas at 21 hrs., 43 hrs. or 8 days.

11-E. At 4 P. M. November 8, plant from 11-B into lactose fermentation tube. No gas at 21 and 43 hours, 5% at 8 days.

11-F. At 11 A. M. November 14, plant from 11-B upon agar slant. Fairly profuse growth. Gram stains show Gram negative Coli like rods. On November 19, it was noticed that the growth was contaminated. Gram stains showed two types of Bacillia and one cocci. At 4 P. M. November 19, petri dishes 11-M & N are plated from this slant.
HISTORY OF WATER SAMPLE NUMBER 11. (CONT. PG. 2)

11-G. At 11 A.M. November 14, a lactose tube is inoculated from 11-H. No gas at the end of 8 days.

11-H. At 1 P.M. November 8, a lactose tube is inoculated from 11-A. 10% gas at the end of 8 days.

11-J. Same conditions and same growth as in 11-H.

11-K. At 11 A.M. November 14, inoculate dulcitol tube from 11-B. 5% gas at 48 hrs and at 5 days.

11-L. At 11 A.M. November 14, inoculate saccharose tube from 11-B. 5% gas at 48 hrs and at 5 days.

11-M & N. At 4 P.M. November 19, two petri dishes plated from 11-F. Growth no. 1 was concentrically ringed and almost transparent. Growth no. 2 was white and flaky. Growth no. 3 occurred in small, round, grayish colonies.

11-O. (Pure culture 11-1a). Growth no. 1 inoculated upon agar slant. Gram negative coli like rods on stains. Inoculation of November 26 on carbohydrate media showed no gas from lactose, gas from dulcitol at 43 hrs and from saccharose at 4 days. Analysis for symbiotic action on lactose started December 6 showed the following:

11-0 pure, gas at 45 hrs. 2%; 11-1 pure, no gas;

11-R pure, gas at 45 hrs. 10%. The mixed cultures for symbiotic action need not be included as the above shows we have isolated two lactose fermenters. On January 4, 1924 this culture was included among the pure cultures as 11-1a.
HISTORY OF WATER SAMPLE NUMBER 11. (CONT. PG.3).

11-P. (11-1b). Inoculated on an agar slant at the same time and from the same growth as 11-0. In the earlier tests this proved to be an exact duplicate of 11-0 so it was discarded in favor of 11-0.

11-Q. (Purp culture 11-2). On November 22, growth no. 2 from 11-M & H, was inoculated upon an agar slant. Repeated tests showed it to be a non gas former in lactose, dulcitol and saccharose.

11-R. (Pure culture 11-3). On November 22, growth no. 3 from 11-M & H, was inoculated upon an agar slant. 11-R and 11-0 were inoculated at the same time and on the same batch of culture media. 11-R differs from 11-0 in these tests in being dulcitol minus and in fermenting 10% gas in 45 hrs on lactose cultures of December 6, 1923.

Summary.

11-0 (Pure culture 11-1a) 11-R (Pure culture 11-3)
Agar slant Nov. 22, 1923 Agar slant Nov. 22, 1923
Result of lactose plants. Results of lactose plants.
Dec. 6. 2% at 45 hrs December 6. 10% at 43 hrs.
Jan. 4, 1924. at 24 hrs. Jan. 4, 1924. at 70 hours.
The writer has checked all media used above by getting both positive and negative results in inoculations from all batches.
Water Sample Trips, page 1.

Rain from mid-night to 9 A.M. Cool, but not cold.
Samples #1 to #5 were taken near Lecoma road in the A.M. from 9:00 to 11:00. 1 cc samples from these were planted in lactose fermentation tubes at 1:00 P.M.
Samples #6 to #17 were taken from springs and streams near Bridge School House. 1 cc samples from these were planted in lactose fermentation tubes at 4:00 P.M. Samples taken in P.M.

2. Wednesday, November 7, 1923. Millar and Butler.
No rain since Saturday, November 3 (4 days).
Samples with subscript "a" were taken from the same sources as the original numbers. Samples taken: 6a, 7a, 9a, 10a, 11a, 13a, 14a, 15a and 16a. 1 cc from each of the above samples was planted in lactose fermentation tubes.
Water Sample Trips, Page 2.

A rain of Thursday, November 22, after a week of dry weather, affected stream and spring flow very little.
A frost occurred during the preceding week.
Samples #101 to #112 were taken in Poele Hollow and around Newburg during the morning and 1 cc samples were planted in lactose tubes at 2:00 P.M.
Samples #113 to #121 were taken down Little Beaver valley in the afternoon, and 1 cc samples were planted in lactose tubes at 5:00 P.M.

Five days since a rain. Cool and clear. Samples taken from sources near Rolla in P.M. Plant 1 cc in lactose, 5:30 P.M.

5. Friday, November 30, 1923. Millar, Butler and Mikell.
Cool and Clear. A rain the day before was preceded by a week of dry weather. Samples #301 to #309, taken from sources near Bridge School House in the afternoon were planted (1 cc) in lactose tubes at 5:00 P.M.
Water Sample Trips, Page 2.

Rained all day Thursday, Friday was clear, while Saturday was cloudy. Samples #401 to #409 were taken on trip to Nancy Hills. Trip made in the afternoon. Samples (1 cc) were planted in lactose tubes at 5:00 P.M.

7. Saturday, December 8, 1923. Millar, Butler and Mikell.

Weather of week preceding: Monday, clear; Tuesday, snow; Wednesday and Thursday, thaw; Friday, clear.

Samples #501 to #513 were taken in Mill Creek valley, south of Newburg, on all day trip. Samples (1 cc) were planted in lactose tubes at 5:00 P.M.

Rainy, following a night of rain.

Samples #601 to #613 were taken from sources around Newburg in the afternoon. Samples (1 cc) were planted in lactose 6 P.M.
Water Sample Trips, Page 4.

It rained Wednesday. Ground was frosty.

Samples #701 to #713 were taken from sources North and West of Rolla as far as Cave Spring creek. Trip in the P.M.
Samples (1 cc) planted in lactose tubes at 5:00 P.M.

Rain, Wednesday. Cloudy. Trip in P.M.

Samples #801 to #813 were taken from sources in and around Newburg. Samples (1 cc) planted in lactose at 7:00 P.M.

No rain for five days. Ground partly frozen. Trip in P.M.

Samples #901 to #913 were taken in Little Beaver valley from sources along and north of Rolla-Newburg road.
Samples #(#1 cc) planted in lactose tubes at 5:00 P.M.

RESUME OF WATER SAMPLE TRIPS.

1. full day trip. 2 double trips(return at noon)
8 half day trips. Total number of trips, 13.
Detailed Description of Water Sample Sources, Page 1.

1. #1. Love French at Lecomta Road just above the mouth of Deible Creek. East side Sec. 13 twp. 37 ra 8. Septic tank of Bella sewer system, discharges 1¼ miles above. Water, cloudy. Drainage area, 2 square miles.

3. #3. Creek west of Lecomta Road, in Sec 26-37-8. Water, only slightly cloudy. Drainage area 200 acres.

4. #4. Creek west of Lecomta Road in south part of Sec 25-37-8 Water, only slightly cloudy. Drainage area 500 acres.

7. #7. Small dry weather spring 200 feet S. E. of Bridge School House, under a medium height ridge (Sec 17-37-8).

9. #9. Small housed dry weather spring 1000 ft. from a ridge and about 1000 ft west of Bridge School House, Sec 17-37-8.

Detailed Description of Water Sources, page 2.

11. #11. Very small housed dry weather spring, west of Little Beaver road, and under high ridge. N. E. ½ Sec 19-37-8.

13. #13. Large (small house) dry weather spring 75 ft east of Little Beaver creek, 500 ft from ridge. S.E. ½ Sec.19-37-8.

14. #14. Large open dry weather spring in shallow stream basin, 80 ft east of Little Beaver creek, 500 ft from ridge. In S.W. ½ Sec 17-37-5, and 1100 ft N.W. of Bridge School House.

15. #15. Small housed dry weather spring, south of Rolla-Newburg road in S.E. ½ Sec 8-37-8. Gentle slope to ridge.

Drainage area 2½ square miles.

18. #18a. Same source as #6.

19. #19a. Same source as #7.

20. #20a. Same source as #8.

21. #21a. Same source as #10.

22. #22a. Same source as #11.

23. #23a. Same source as #13.

24. #24a. Same source as #14.

25. #25a. Same source as #15.

26. #26a. Same source as #16.
Detailed Description of Water Sample Sources, Page 3.
27. #101. Small flowing well- 1 inch side stream from 4 inch vertical pipe under about 4 ft of head. S.E. 1/4 Sec 23-37-9. 30 ft west of stream in Poole Hollow, and 1000 ft. from Frisco culvert.
30. #104. Large, 10 inch diameter, flowing well, near end of deep draw on east side of Poole Hollow. S.W. 1/4 Sec 24-37-9.
33. #107. Little Piney creek at intersection of East side Section 22-37-9.
37. #111. Small walled spring near head of flat draw. N.E. Corner, Sec 14-37-9.
Detailed Description of Water Sample Sources, page 4.
38. #112. North fork of Little Beaver creek, north of main Rolla-Newburg road. Section 8-37-8.
39. #113. Same as source no.6.
40. #114. Same as source no.7.
41. #115. Same as source no.9.
42. #116. Beaver creek, above mouth of Little Beaver.
 Large, clear stream. N.W. 1/4 Sec 30-37-8.
43. #117. Little Piney Creek, above the mouth of Beaver.
 West line 30-37-8. Large, fairly clear stream.
44. #118. Same source as #13.
45. #119. Same source as #11.
46. #120. Small open dry weather spring, west side of Little Beaver road under a shallow bluff. S.W. Cor. Sec 18-37-8.
47. #121. Same source as #14.
50. #203. Wet weather seep spring in steep gulley bed, 50 ft. east of road. N.E. Corner Sec. 2-37-8.
51. #204. Very small dry weather spring from covered gulley, on west side of main gulley on east side of golf links.11-37-8.
52. #205. Very small dry weather spring at foot of waste dump S.W. and Friese cut. S.E. 1/4 Sec 10-37-8.
Detailed Description of Water Sample Sources, page 5.

53. #206. Rock bottom pool in stream bed fed by seep springs. Drainage area 15 acres. 100 ft south of #52(#205).
54. #207. Creek bed fed by seep springs. Drainage area, 20 acres. N.W. 1/4 Sec 14-37-8.
55. #208. From mid-point on embankment Frisco pond. 2-37-8.
56. #209. Frisco pond. Embankment 50 south of #208. 2-37-8.
57. #301. Same source as #17.
58. #302. Same source as #6.
59. #303. Same source as #7.
60. #304. Same source as #9.
61. #305. Same source as #11.
62. #306. Same source as #13.
63. #307. Same source as #120.
64. #308. Same source as #14.
65. #309. Same source as #15.
68. #403. Small dry weather spring in Vodd's hollow. Old spring house is torn down. From rock ledge under bluff. S 1/2 Sec 33-36-8.
69. #404. Nancy Mills large walled dry weather spring.
South line Sec. 32-36-8.
Detailed Description of Water Sample Sources, page 6.

70. #405. Yancy Mills pond- above millrace. 9½ Sec 32-36-9.
71. #406. Moderate dry weather cavern spring under 60 ft.
on sloping cliff. 8.E.⁴ Sec 4-35-9.
72. #407. Little Piney creek below mouth of William's branch.
Section 4-35-8.
73. #408. Stream north of road. East branch at S.W. corner
Section 26-36-6. Drainage area 160 acres.
74. #409. Same as source #2.
75. #501. Yelton's spring. Small dry weather housed spring.
76. #502. Clear rocky bed stream fed from filtered seep
springs. Drainage area 160 acres. Sec. 4-36-9.
77. #503. Moderate housed dry weather spring, 10 ft west of
Mill creek road and NE under 60 ft ridge. Sec 8-36-W 9.
78. #504. Moderate dry weather spring (flowing from between
tree roots) in Mill creek road. 1 to 5 slope. Sec 17-36-9.
79. #505. Large bubbling spring, feeding a pond. North line
Sec. 26-36-9.
80. #506. Moderate dry weather spring, concreted wall under
cliffs (60 ft bluff). Sec. 29-36-9.
81. #507. Small leafy dry weather spring in creek bank. Slope
1 to 5 to 30 ft ridge. Sect. 34-36-9.
82. #508. Small dry weather spring under ledge in small MXX
Detailed Description of Water Sample Sources, page 7.

65. #611. Small spring in flat ground. Ridge 100 ft away. 100 ft east of road (Mill creek). Sec 8-36-9.

70. #603. Very small dry weather spring, west side of road. Flat slopes. Section 10-37-9.

72. #605. Moderate dry weather spring, bubbling up near flat (10 ft) mound. 400 ft to high ground. Sec 15-37-9.

74. #607. Moderate walled dry weather spring, at edge of flat 40 ft mound. East line Sec. 21-37-9.
Description of Water Sample Sources, page 8.

95. #608. Small dry weather spring. Flat I slope. Near edge of flat 60 ft ridge. South line Sec 22-37-9.

96. #609. Small dry weather spring under steep 80 ft hill. South half section 21-37-9.

97. #610. Small MMX housed (pipe) dry weather spring. At stream edge, under 15 ft flat. NW Sec 22-37-9.

98. #611. Very small piped spring. 80 ft up on side of 200 ft hill. NE Sec 27-37-9.

100. #613. Very small seep springs in MMX steep side gulley in 160 ft hill. South line Sec 22-37-9.

102. #702. Wet weather seep spring in meadow, 50 ft east of stream. West half section 35-38-8.

104. #704. Convergence of two small, clear streams, below (North of) road. Drainage 300 acres. N.W. 4 Sec 34-38-8.

Detailed Description of Water Sample Sources, page 9.

107. #707. Clear rock bed stream. Drainage area \(\frac{1}{4} \) square mile. S.E.\(\frac{1}{4} \) Sec 32-38-8.

110. #710. Cave Spring Creek- at rapids- clear. Drainage area about 6 square miles. E\(\frac{1}{4} \) Sec 33-38-9.

112. #712. Cave Spring creek. Swift. Slightly cloudy. Drainage area E\(\frac{1}{2} \) sq. miles. West half Section 2-37-9.

114. #801. Same source as #601.

115. #802. Same source as #602.

116. #803. Same source as 603.

117. #804. Same source as #604.

118. #805. Same source as #605.

119. #806. Same source as #606.

120. #807. Same source as #607.

121. #808. Same source as #609.

122. #809. Same source as #109.

123. #810. Same source as 612.
Detailed Description of Water Sample Sources, page 10.

125. #912. Mouth of an East branch into #811. Drains 300 acres.

130. #904. Small spring 30 ft north of #903.

132. #906. Moderate dry weather spring. From 10ft. diameter

134. #908. Walled housed dry weather spg. Low, flat slopes.
East line Section 6-37-8.

136. #910. Same source as #112.

137. #911. Same source as #15.

138. #912. Mouth of dry weather stream below 5 ft falls on

139. #913. Same source as #16.

RESUME OF WATER SOURCES.

Springs total 54. Streams, 44. Well, 1. Total is 99.

RESUME OF WATER SAMPLES.

Springs, 83. Streams, 55. Well, 1. Total, 139.
Complete tests of Pure Cultures—Gram Negative Red.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Dextrose</th>
<th>Lactose</th>
<th>Saccharose</th>
<th>Dulcitol(2)</th>
<th>Salicin</th>
<th>Lactic Acid</th>
<th>Succinate</th>
<th>Motility</th>
<th>Indole</th>
<th>H 2 S</th>
<th>Gelatin (1)</th>
<th>Coag.</th>
<th>Litmus Milk</th>
<th>Source</th>
<th>Date Sampled</th>
<th>Weather</th>
<th>Number of Days Since Rain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11-10 247</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Spring</td>
<td>1/3</td>
<td>+</td>
<td>——</td>
</tr>
<tr>
<td>2</td>
<td>11-1 247 1</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Spring</td>
<td>1/3</td>
<td>+</td>
<td>——</td>
</tr>
<tr>
<td>3</td>
<td>4071</td>
<td>24244 1</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Stream</td>
<td>12/1</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4072</td>
<td>24244 1</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Stream</td>
<td>12/1</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>512</td>
<td>2449 1</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Stream</td>
<td>12/1</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>6072</td>
<td>2449 1</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Stream</td>
<td>12/1</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>6081</td>
<td>24244 1</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Stream</td>
<td>12/1</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>610</td>
<td>2449 1</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Stream</td>
<td>12/1</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>611</td>
<td>24244 1</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Stream</td>
<td>12/1</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>612</td>
<td>24244 1</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Stream</td>
<td>12/1</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>613</td>
<td>24244 1</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Stream</td>
<td>12/1</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>7015</td>
<td>24244 1</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Stream</td>
<td>12/1</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>703</td>
<td>24244 1</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Stream</td>
<td>12/1</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>7065</td>
<td>24244 1</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Stream</td>
<td>12/1</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>7085</td>
<td>24244 1</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Stream</td>
<td>12/1</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>709</td>
<td>24244 1</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Stream</td>
<td>12/1</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>710</td>
<td>24244 1</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Stream</td>
<td>12/1</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>710</td>
<td>24244 1</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Stream</td>
<td>12/1</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>710</td>
<td>24244 1</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Stream</td>
<td>12/1</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>710</td>
<td>24244 1</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Stream</td>
<td>12/1</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>710</td>
<td>24244 1</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Stream</td>
<td>12/1</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>22</td>
<td>710</td>
<td>24244 1</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Stream</td>
<td>12/1</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>23</td>
<td>710</td>
<td>24244 1</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Stream</td>
<td>12/1</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>24</td>
<td>710</td>
<td>24244 1</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Stream</td>
<td>12/1</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>25</td>
<td>710</td>
<td>24244 1</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Stream</td>
<td>12/1</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>26</td>
<td>710</td>
<td>24244 1</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Stream</td>
<td>12/1</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>27</td>
<td>710</td>
<td>24244 1</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Stream</td>
<td>12/1</td>
<td>—</td>
<td>2</td>
</tr>
</tbody>
</table>

N.B. + indicates a weak positive reaction. Dulcitol—columns 2 and 6—repeat test used. (Carbon Dioxide and Hydrogen Ratio Column 16) N.G. indicates too small a quantity of gas for test. Column 11 gives days, other columns hours of time.
A Study of the Cultural Reactions and Classification of the 27 Pure Cultures.

To differentiate Fecal from Non-Fecal Origin by weighting various reactions.

<table>
<thead>
<tr>
<th>Comparison & Correlation of Indication of Fecal Origin</th>
<th>1 2 3 4 5 6 7 8 9 10</th>
<th>1 2 3 4 5 6 7 8 9 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mac Conkey Lunde W.R & W.R. Benedict Citrate Y & P</td>
<td>X X X X X X X X X</td>
<td>X X X X X X X X X</td>
</tr>
<tr>
<td>X X X X X X X X X</td>
<td>X X X X X X X X X</td>
<td>X X X X X X X X X</td>
</tr>
<tr>
<td>X X X X X X X X X</td>
<td>X X X X X X X X X</td>
<td>X X X X X X X X X</td>
</tr>
<tr>
<td>X X X X X X X X X</td>
<td>X X X X X X X X X</td>
<td>X X X X X X X X X</td>
</tr>
<tr>
<td>X X X X X X X X X</td>
<td>X X X X X X X X X</td>
<td>X X X X X X X X X</td>
</tr>
<tr>
<td>X X X X X X X X X</td>
<td>X X X X X X X X X</td>
<td>X X X X X X X X X</td>
</tr>
<tr>
<td>X X X X X X X X X</td>
<td>X X X X X X X X X</td>
<td>X X X X X X X X X</td>
</tr>
<tr>
<td>X X X X X X X X X</td>
<td>X X X X X X X X X</td>
<td>X X X X X X X X X</td>
</tr>
<tr>
<td>X X X X X X X X X</td>
<td>X X X X X X X X X</td>
<td>X X X X X X X X X</td>
</tr>
<tr>
<td>X X X X X X X X X</td>
<td>X X X X X X X X X</td>
<td>X X X X X X X X X</td>
</tr>
</tbody>
</table>

Where Ind. is 1, 2 or 3. Spaces is blank. Where Ind. agrees

Citrate + 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Origin as determined
by 3 media

Check

All Characters: Media 1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10

X denotes Atypical reactions.
The 27 Pure Cultures classified according to Levine's Classification and showing Atypical cultures.

<table>
<thead>
<tr>
<th>Number</th>
<th>Dextrose</th>
<th>Lactose</th>
<th>Succharose</th>
<th>Salicin</th>
<th>V.P.</th>
<th>M.E</th>
<th>Uric Acid</th>
<th>Motility</th>
<th>Glycerol</th>
<th>Starch</th>
<th>Gelatin</th>
<th>Pure Cultures (Total 27)</th>
<th>Total Cult. Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10, 14, 24</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>21, 23</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>3, 6, 13</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>27</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>16, 14</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12, 25</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4, 5, 9, 17, 18</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>23</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Atypical 17 = 63.7%

Discussion:

1. The CO₂ - Hydrogen gas Ratio in Glucose as determined by inoculating for all cultures proved to be generally indefinite and therefore was not included.

2. In classifying, the Voges Proskur (V.P), Methyl Red (M.R), Uric Acid, Motility and Gelatin reactions were considered primary and any deviation from the specified reactions caused the culture to be classed as Atypical.

3. Glycerol and Starch were not used as media as no Gelatin liquefiers occurred in the 27 pure cultures.
Combination of Tables 3 & 4 in "Colon-Aerogenes Differentiation at Cincinnati" By Bahlman & Sohn. Pgs. 421, 421 of Journal Am Water Works Assn. March 1924

<table>
<thead>
<tr>
<th>Number</th>
<th>Original Cultures</th>
<th>Distribution of Atypical Cultures</th>
<th>Number of Rejuvenated Cultures</th>
<th>After Repeated Test</th>
<th>After Rejuvenated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B. Coli</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Type A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Type B</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Type UPIC</td>
<td>43</td>
<td>29</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Type C</td>
<td>16</td>
<td>12</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Type D</td>
<td>14</td>
<td>10</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>B. Aerogenes</td>
<td>69</td>
<td>48</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Type E</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Type F</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Type G</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Type H</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Type I</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>C. Gel-like</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>D. Gel-like</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>E. Gel-like</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>B. Coli-like</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Atypical</td>
<td>187</td>
<td>125</td>
<td>53</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Types D & G liquefy Gelatin in 15 days.
 Types classed as Gelatin liquefiers liquefy in 5 days.

Pure Cultures as classified by Bahlman & Sohn (Cincinnati)

<table>
<thead>
<tr>
<th>Designation</th>
<th>Designation</th>
<th>Designation</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - + -</td>
<td>D (Gel-)</td>
<td>10 - + -</td>
<td>B. Coli</td>
</tr>
<tr>
<td>2 - + -</td>
<td>D (Gel-)</td>
<td>H - + +</td>
<td>B. Aer</td>
</tr>
<tr>
<td>3 + + -</td>
<td>B. Coli</td>
<td>K - + +</td>
<td>U.P.C.</td>
</tr>
<tr>
<td>4 - + +</td>
<td>B. Aer.</td>
<td>B - + -</td>
<td>B. Coli</td>
</tr>
<tr>
<td>5 - + +</td>
<td>B. Aer.</td>
<td>B - + -</td>
<td>B. Coli</td>
</tr>
<tr>
<td>6 + + -</td>
<td>B. Coli</td>
<td>D (Gel-)</td>
<td>B - + +</td>
</tr>
<tr>
<td>7 + + -</td>
<td>B. Coli</td>
<td>V - + +</td>
<td>U.P.C.</td>
</tr>
<tr>
<td>8 + + -</td>
<td>Type B</td>
<td>V - + +</td>
<td>B. Aer.</td>
</tr>
<tr>
<td>9 + + -</td>
<td>B. Aer.</td>
<td>B - + +</td>
<td>B. Coli</td>
</tr>
</tbody>
</table>

1. B. Coli = 9 = 59.8% D (Gel-) = 3 = 11.1% \[Typical\]
2. B. Aer = 7 = 26.0% \[Atypical\]
3. U.P.C = 4 = 14.8% \[Typical\]
Table of the Colon-Typhoid Series by Winslow, Kligler and Rothberg, 1919. Shown on page 56, Elements of Water Bacteriology, by Prescott and Winslow. Also the classification of the Pure Cultures by this table.

<table>
<thead>
<tr>
<th>Number</th>
<th>Heptoses</th>
<th>Inositolase</th>
<th>Maltose</th>
<th>Arabinose</th>
<th>Sorbitol</th>
<th>Lactose</th>
<th>Saccharose</th>
<th>Paraffin</th>
<th>Naphthol</th>
<th>Gas</th>
<th>V.P.</th>
<th>Litmus Red</th>
<th>Milk</th>
<th>Gelatin</th>
<th>Lead-Acetate</th>
<th>Motility</th>
<th>Pathogenic</th>
<th>Species</th>
<th>Back</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td>Aerogenes</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>-</td>
<td>Cloacae</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>-</td>
<td>Neapolitanes</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>-</td>
<td>Communior</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>-</td>
<td>Coli</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>-</td>
<td>Acidilacti</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td>Morgani</td>
<td>+</td>
</tr>
<tr>
<td>8</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>-</td>
<td>Schoettmuller</td>
<td>+</td>
</tr>
<tr>
<td>9</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>-</td>
<td>Entoritidis</td>
<td>+</td>
</tr>
<tr>
<td>10</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>-</td>
<td>Superstifer</td>
<td>+</td>
</tr>
<tr>
<td>11</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>-</td>
<td>Gallinarium</td>
<td>+</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td>Pullorum</td>
<td>+</td>
</tr>
<tr>
<td>13</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>-</td>
<td>Paratyphosis</td>
<td>+</td>
</tr>
<tr>
<td>14</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>-</td>
<td>Typhosis</td>
<td>+</td>
</tr>
<tr>
<td>15</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>-</td>
<td>Dysenteriae</td>
<td>+</td>
</tr>
<tr>
<td>16</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>-</td>
<td>Shigae</td>
<td>+</td>
</tr>
<tr>
<td>17</td>
<td>-</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>-</td>
<td>Alcaligenes</td>
<td>-</td>
</tr>
</tbody>
</table>

Pure Cultures based on Dulcitol, Salicin, Lactose, Saccharose, V.P., M.R., Litmus Milk, Indol, Motility and Gelatin gives the following:

- Neapolitanus - 4 cultures (Numbers 12, 13, 14 & 25)
- Communior - 1 culture - Number 6
- Coli - 1 culture - Number 24

The remaining 21 cultures (78%) are Atypical.

It will be noted that the true pathogenic members of this series, the dysentery, typhoid and paratyphoid organisms, all fail to ferment lactose.
Bergey's Manual of Determinative Bacteriology 1923

Key: Tribe Bacteriaceae - Species of Genera Escherichia & Aerobacter

<table>
<thead>
<tr>
<th>Number</th>
<th>Lactose</th>
<th>Saccharose</th>
<th>Bile</th>
<th>Motility</th>
<th>Indol</th>
<th>V.P.</th>
<th>Gram-</th>
<th>Catalase</th>
<th>Lysine</th>
<th>Histidine</th>
<th>H2S</th>
<th>Nitrate</th>
<th>Naphthol</th>
<th>Species</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td>Coli</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
<td>+</td>
<td>Schaeferi</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>+</td>
<td>paragranthali</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>+</td>
<td>Vekanda</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>+</td>
<td>Anata</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>+</td>
<td>pseudo-salenteriae</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>+</td>
<td>grunthali</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>+</td>
<td>Bacillus Lacti</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>+</td>
<td>vesiculosa</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>+</td>
<td>Reali</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>+</td>
<td>Communior</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>+</td>
<td>pseudocoelodes</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>+</td>
<td>ichthyosmiae</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>+</td>
<td>alkaliscens</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>+</td>
<td>galactophila</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>+</td>
<td>symbiota</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>+</td>
<td>gastrica</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>+</td>
<td>plebia</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>+</td>
<td>illaca</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>+</td>
<td>neapolitani</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>+</td>
<td>pseudocoelodes</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>+</td>
<td>astheniae</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>+</td>
<td>aerogenes</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>+</td>
<td>oxytocum</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>+</td>
<td>chiense</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>+</td>
<td>archibaldi</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>+</td>
<td>cloacae</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>+</td>
<td>Leivans</td>
<td></td>
</tr>
</tbody>
</table>

Notes: (+) indicates an uncommon or doubtful positive reaction.
Detailed Tests of Isolated Cultures.
The Gram Stains of these cultures show them
to be mixed. As these were tested in the same
media batches as the Pure Cultures this data is retained.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Dextrose</th>
<th>Lactose</th>
<th>Saccharose</th>
<th>Dulcitol</th>
<th>Salicin</th>
<th>Methyl Red</th>
<th>V. P.</th>
<th>Indol</th>
<th>Gelatin</th>
<th>Litmus Milk</th>
<th>Source</th>
<th>Date of Samples</th>
<th>Rainy</th>
<th>Number of Days since Rain</th>
<th>Weather</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1076c</td>
<td>242424</td>
<td>49</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>stream</td>
<td>12/11</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>903x</td>
<td>242424</td>
<td>24</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>spring</td>
<td>12/18</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>503a</td>
<td>242424</td>
<td>24</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>spring</td>
<td>12/18</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>510c</td>
<td>24242424</td>
<td>24</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>spring</td>
<td>12/18</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>513c</td>
<td>242424</td>
<td>24</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>spring</td>
<td>12/18</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>502c</td>
<td>24242424</td>
<td>24</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>spring</td>
<td>12/18</td>
<td>2</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>602c</td>
<td>242424</td>
<td>24</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>spring</td>
<td>12/18</td>
<td>2</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>603a</td>
<td>242424</td>
<td>24</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>spring</td>
<td>12/18</td>
<td>2</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>605</td>
<td>242424</td>
<td>24</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>spring</td>
<td>12/18</td>
<td>2</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>606c</td>
<td>481524</td>
<td>24</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>stream</td>
<td>12/18</td>
<td>2</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>607c</td>
<td>482424</td>
<td>24</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>stream</td>
<td>12/18</td>
<td>2</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>613c</td>
<td>242424</td>
<td>24</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>spring</td>
<td>12/18</td>
<td>2</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>613c</td>
<td>242424</td>
<td>24</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>spring</td>
<td>12/18</td>
<td>2</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>701c</td>
<td>482424</td>
<td>24</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>stream</td>
<td>12/18</td>
<td>2</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>702c</td>
<td>482424</td>
<td>24</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>stream</td>
<td>12/18</td>
<td>2</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>704c</td>
<td>242424</td>
<td>24</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>stream</td>
<td>12/18</td>
<td>2</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>709c</td>
<td>242424</td>
<td>24</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>stream</td>
<td>12/18</td>
<td>2</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>18</td>
<td>711c</td>
<td>242424</td>
<td>24</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>stream</td>
<td>12/18</td>
<td>2</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td>803c</td>
<td>24202424</td>
<td>24</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>stream</td>
<td>12/18</td>
<td>2</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>801c</td>
<td>242424</td>
<td>24</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>spring</td>
<td>12/18</td>
<td>2</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>908c</td>
<td>242491</td>
<td>246024</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>stream</td>
<td>12/18</td>
<td>2</td>
<td>20</td>
<td>21</td>
</tr>
</tbody>
</table>

N.B. {+ in column 14 indicates a decolorization process in the litmus milk so that acidity is doubtful.
{Dulcitol (I), column 6 is from the same batch as Dulcitol (O). Column 14 of pure cultures.
{Numbers in Columns 3 to 7 indicates in hours the age of sample when positive reaction was noted.
Data - Lactose from Original Samples - Page 1

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Source</th>
<th>Lact畜牧业 24 hrs</th>
<th>Lact畜牧业 48 hrs</th>
<th>Remarks</th>
<th>No</th>
<th>Name</th>
<th>Source</th>
<th>Lact畜牧业 24 hrs</th>
<th>Lact畜牧业 48 hrs</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Stream</td>
<td>+</td>
<td>+</td>
<td></td>
<td>43</td>
<td>17</td>
<td>Stream</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Stream</td>
<td>+</td>
<td>+</td>
<td></td>
<td>44</td>
<td>19</td>
<td>Spring</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Stream</td>
<td>+</td>
<td>+</td>
<td></td>
<td>45</td>
<td>19</td>
<td>Spring</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Stream</td>
<td>+</td>
<td>+</td>
<td></td>
<td>46</td>
<td>20</td>
<td>Spring</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Pool</td>
<td>-</td>
<td>+</td>
<td></td>
<td>47</td>
<td>21</td>
<td>Spring</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Stream</td>
<td>+</td>
<td>+</td>
<td></td>
<td>48</td>
<td>201</td>
<td>Sleep</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>Spring</td>
<td>+</td>
<td>+</td>
<td></td>
<td>49</td>
<td>202</td>
<td>Stream</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>Spring</td>
<td>+</td>
<td>+</td>
<td></td>
<td>50</td>
<td>203</td>
<td>Spring</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>Spring</td>
<td>+</td>
<td>+</td>
<td></td>
<td>51</td>
<td>204</td>
<td>Spring</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>Spring</td>
<td>+</td>
<td>+</td>
<td></td>
<td>52</td>
<td>205</td>
<td>Spring</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>Spring</td>
<td>-</td>
<td>+</td>
<td>delayed</td>
<td>53</td>
<td>206</td>
<td>Spring</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>Spring</td>
<td>+</td>
<td>+</td>
<td></td>
<td>54</td>
<td>207</td>
<td>Stream</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>Spring</td>
<td>-</td>
<td>-</td>
<td>O.K.</td>
<td>55</td>
<td>209</td>
<td>Pond</td>
<td>-</td>
<td>-</td>
<td>O.K.</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>Spring</td>
<td>-</td>
<td>-</td>
<td>O.K.</td>
<td>56</td>
<td>209</td>
<td>Pond</td>
<td>-</td>
<td>-</td>
<td>O.K.</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>Spring</td>
<td>+</td>
<td>+</td>
<td></td>
<td>57</td>
<td>301</td>
<td>Stream</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>Stream</td>
<td>+</td>
<td>+</td>
<td></td>
<td>58</td>
<td>302</td>
<td>Stream</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>Stream</td>
<td>+</td>
<td>+</td>
<td></td>
<td>59</td>
<td>303</td>
<td>Spring</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>Stream</td>
<td>-</td>
<td>-</td>
<td>delayed</td>
<td>60</td>
<td>304</td>
<td>Spring</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>Spring</td>
<td>-</td>
<td>-</td>
<td>delayed</td>
<td>61</td>
<td>305</td>
<td>Spring</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>Spring</td>
<td>+</td>
<td>+</td>
<td></td>
<td>62</td>
<td>306</td>
<td>Spring</td>
<td>-</td>
<td>-</td>
<td>O.K.</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>Spring</td>
<td>+</td>
<td>+</td>
<td></td>
<td>63</td>
<td>307</td>
<td>Spring</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>Spring</td>
<td>-</td>
<td>-</td>
<td>delayed</td>
<td>64</td>
<td>308</td>
<td>Spring</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>Spring</td>
<td>+</td>
<td>+</td>
<td></td>
<td>65</td>
<td>309</td>
<td>Spring</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>Spring</td>
<td>+</td>
<td>+</td>
<td></td>
<td>66</td>
<td>401</td>
<td>Stream</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>Spring</td>
<td>+</td>
<td>+</td>
<td></td>
<td>67</td>
<td>402</td>
<td>Spring</td>
<td>-</td>
<td>-</td>
<td>O.K.</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>Stream</td>
<td>+</td>
<td>+</td>
<td></td>
<td>68</td>
<td>403</td>
<td>Spring</td>
<td>-</td>
<td>-</td>
<td>O.K.</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>Stream</td>
<td>+</td>
<td>+</td>
<td></td>
<td>69</td>
<td>404</td>
<td>Spring</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>Stream</td>
<td>+</td>
<td>+</td>
<td></td>
<td>70</td>
<td>405</td>
<td>Spring</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>29</td>
<td>Stream</td>
<td>-</td>
<td>+</td>
<td>delayed</td>
<td>71</td>
<td>406</td>
<td>Spring</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>Stream</td>
<td>-</td>
<td>+</td>
<td></td>
<td>72</td>
<td>407</td>
<td>Stream</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>31</td>
<td>Stream</td>
<td>+</td>
<td>+</td>
<td></td>
<td>73</td>
<td>408</td>
<td>Stream</td>
<td>-</td>
<td>-</td>
<td>O.K.</td>
</tr>
<tr>
<td>32</td>
<td>32</td>
<td>Stream</td>
<td>+</td>
<td>+</td>
<td></td>
<td>74</td>
<td>409</td>
<td>Stream</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>33</td>
<td>Stream</td>
<td>+</td>
<td>+</td>
<td></td>
<td>75</td>
<td>501</td>
<td>Spring</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>34</td>
<td>Stream</td>
<td>+</td>
<td>+</td>
<td></td>
<td>76</td>
<td>502</td>
<td>Stream</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td>Stream</td>
<td>+</td>
<td>+</td>
<td></td>
<td>77</td>
<td>503</td>
<td>Spring</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>36</td>
<td>Stream</td>
<td>+</td>
<td>+</td>
<td></td>
<td>78</td>
<td>504</td>
<td>Spring</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>37</td>
<td>Stream</td>
<td>+</td>
<td>+</td>
<td></td>
<td>79</td>
<td>505</td>
<td>Stream</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>38</td>
<td>Stream</td>
<td>+</td>
<td>+</td>
<td></td>
<td>80</td>
<td>506</td>
<td>Spring</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>39</td>
<td>Stream</td>
<td>+</td>
<td>+</td>
<td></td>
<td>81</td>
<td>507</td>
<td>Spring</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>Stream</td>
<td>+</td>
<td>+</td>
<td></td>
<td>82</td>
<td>508</td>
<td>Spring</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>41</td>
<td>Stream</td>
<td>+</td>
<td>+</td>
<td></td>
<td>83</td>
<td>509</td>
<td>Stream</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>42</td>
<td>Stream</td>
<td>+</td>
<td>+</td>
<td></td>
<td>84</td>
<td>510</td>
<td>Stream</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

N.B. @ indicates a weak positive reaction.
<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Source</th>
<th>Lact 24 hrs</th>
<th>48 hrs</th>
<th>Remarks</th>
<th>No</th>
<th>Name</th>
<th>Source</th>
<th>Lact 24 hrs</th>
<th>48 hrs</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>5/11</td>
<td>spring</td>
<td>-</td>
<td>+</td>
<td></td>
<td>127</td>
<td>9/01</td>
<td>spring</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>5/12</td>
<td>stream</td>
<td>+</td>
<td>+</td>
<td></td>
<td>128</td>
<td>9/02</td>
<td>stream</td>
<td>θ</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>5/13</td>
<td>stream</td>
<td>-</td>
<td>+</td>
<td></td>
<td>129</td>
<td>9/03</td>
<td>spring</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>6/01</td>
<td>spring</td>
<td>-</td>
<td>+</td>
<td></td>
<td>130</td>
<td>9/04</td>
<td>spring</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>6/02</td>
<td>spring</td>
<td>+</td>
<td>+</td>
<td></td>
<td>131</td>
<td>9/05</td>
<td>stream</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>6/03</td>
<td>spring</td>
<td>-</td>
<td>+</td>
<td></td>
<td>132</td>
<td>9/06</td>
<td>spring</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>6/04</td>
<td>spring</td>
<td>-</td>
<td>+</td>
<td>No Lact. Check</td>
<td>133</td>
<td>9/07</td>
<td>stream</td>
<td>θ</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>6/05</td>
<td>spring</td>
<td>+</td>
<td>+</td>
<td></td>
<td>134</td>
<td>9/08</td>
<td>spring</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>6/06</td>
<td>stream</td>
<td>+</td>
<td>+</td>
<td></td>
<td>135</td>
<td>9/09</td>
<td>stream</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>6/07</td>
<td>spring</td>
<td>+</td>
<td>+</td>
<td></td>
<td>136</td>
<td>9/10</td>
<td>stream</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>6/08</td>
<td>spring</td>
<td>-</td>
<td>+</td>
<td></td>
<td>137</td>
<td>9/11</td>
<td>stream</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>6/09</td>
<td>spring</td>
<td>-</td>
<td>+</td>
<td>No Lact. Check</td>
<td>138</td>
<td>9/12</td>
<td>stream</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>6/10</td>
<td>spring</td>
<td>-</td>
<td>+</td>
<td></td>
<td>139</td>
<td>9/13</td>
<td>stream</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>6/11</td>
<td>spring</td>
<td>-</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>6/12</td>
<td>spring</td>
<td>-</td>
<td>+</td>
<td>No Lact. Check</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>6/13</td>
<td>spring</td>
<td>-</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>7/01</td>
<td>stream</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>7/02</td>
<td>stream</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>7/03</td>
<td>stream</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>7/04</td>
<td>stream</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>7/05</td>
<td>stream</td>
<td>-</td>
<td>-</td>
<td>O.K.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>7/06</td>
<td>well</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>7/07</td>
<td>stream</td>
<td>-</td>
<td>-</td>
<td>O.K.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>7/08</td>
<td>stream</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>7/09</td>
<td>spring</td>
<td>-</td>
<td>θ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>7/10</td>
<td>stream</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>7/11</td>
<td>stream</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>7/12</td>
<td>stream</td>
<td>-</td>
<td>θ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>7/13</td>
<td>spring</td>
<td>-</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>8/01</td>
<td>spring</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>8/02</td>
<td>spring</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>8/03</td>
<td>spring</td>
<td>-</td>
<td>θ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>8/04</td>
<td>spring</td>
<td>-</td>
<td>-</td>
<td>O.K.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>8/05</td>
<td>spring</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>8/06</td>
<td>stream</td>
<td>-</td>
<td>θ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>8/07</td>
<td>spring</td>
<td>-</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>8/08</td>
<td>spring</td>
<td>-</td>
<td>-</td>
<td>O.K.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>8/09</td>
<td>spring</td>
<td>-</td>
<td>-</td>
<td>O.K.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>8/10</td>
<td>spring</td>
<td>-</td>
<td>θ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>8/11</td>
<td>stream</td>
<td>-</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>8/12</td>
<td>stream</td>
<td>-</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>8/13</td>
<td>stream</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of Samples: 139
Number of Checks: 138

No. Lactose: - 21
No. Delayed fermenters: 8
No. No Lactose check: 7
Total Negative: 35%
Percent Negative: 25.4%
No. 24 hr Lactose (10%): 48
No. 24 hr Lactose trace: 8
No. 48 hr +; 24 hr: 46

24 hr Check: 56 40.6%
48 hr Check: 53 38.4%
48 hr Lact: 2.9 21.7%

N.B. θ indicates a weak positive reaction.
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Lactose</th>
<th>Saccharose</th>
<th>Sukitol</th>
<th>Salcin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>21</td>
<td>17</td>
<td>-</td>
<td>B. Aerogenes</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>23</td>
<td>23</td>
<td>-</td>
<td>B. Communior (No Lact check)</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>21</td>
<td>17</td>
<td>-</td>
<td>B. Aerogenes</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>40</td>
<td>23</td>
<td>-</td>
<td>B. Communior (No Lact check)</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>21</td>
<td>17</td>
<td>0</td>
<td>B. Communior</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>23</td>
<td>23</td>
<td>-</td>
<td>B. Communior (No Lact check)</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>21</td>
<td>17</td>
<td>0</td>
<td>B. Communior</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>23</td>
<td>23</td>
<td>-</td>
<td>B. Communior (No Lact check)</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>21</td>
<td>17</td>
<td>-</td>
<td>B. Aerogenes</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>23</td>
<td>23</td>
<td>-</td>
<td>B. Communior (No Lact check)</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>21</td>
<td>17</td>
<td>17</td>
<td>B. Communior</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>23</td>
<td>23</td>
<td>-</td>
<td>B. Communior (No Lact check)</td>
</tr>
<tr>
<td>13</td>
<td>17</td>
<td>21</td>
<td>17</td>
<td>-</td>
<td>B. Aerogenes</td>
</tr>
<tr>
<td>14</td>
<td>17</td>
<td>23</td>
<td>23</td>
<td>-</td>
<td>B. Communior (No Lact check)</td>
</tr>
<tr>
<td>15</td>
<td>102</td>
<td>-</td>
<td>24</td>
<td>-</td>
<td>B. Aerogenes (No Lact check)</td>
</tr>
<tr>
<td>16</td>
<td>103</td>
<td>24</td>
<td>24</td>
<td>48</td>
<td>B. Communior</td>
</tr>
<tr>
<td>17</td>
<td>103</td>
<td>24</td>
<td>24</td>
<td>-</td>
<td>B. Aerogenes</td>
</tr>
<tr>
<td>18</td>
<td>105</td>
<td>24</td>
<td>-</td>
<td>24</td>
<td>B. Communior</td>
</tr>
<tr>
<td>19</td>
<td>107</td>
<td>24</td>
<td>24</td>
<td>48</td>
<td>B. Communior</td>
</tr>
<tr>
<td>20</td>
<td>111</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>B. Communior</td>
</tr>
<tr>
<td>21</td>
<td>112</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>B. Communior</td>
</tr>
<tr>
<td>22</td>
<td>113</td>
<td>24</td>
<td>24</td>
<td>29</td>
<td>B. Communior</td>
</tr>
<tr>
<td>23</td>
<td>114</td>
<td>72</td>
<td>-</td>
<td>48</td>
<td>B. Communior</td>
</tr>
<tr>
<td>24</td>
<td>114</td>
<td>48</td>
<td>-</td>
<td>-</td>
<td>B. Acid-Lacti</td>
</tr>
<tr>
<td>25</td>
<td>115</td>
<td>24</td>
<td>48</td>
<td>24</td>
<td>B. Communior</td>
</tr>
<tr>
<td>26</td>
<td>115</td>
<td>24</td>
<td>-</td>
<td>24</td>
<td>B. Communior</td>
</tr>
<tr>
<td>27</td>
<td>116</td>
<td>72</td>
<td>24</td>
<td>-</td>
<td>B. Aerogenes</td>
</tr>
<tr>
<td>28</td>
<td>118</td>
<td>24</td>
<td>24</td>
<td>-</td>
<td>B. Aerogenes</td>
</tr>
<tr>
<td>29</td>
<td>119</td>
<td>24</td>
<td>72</td>
<td>24</td>
<td>B. Communior</td>
</tr>
<tr>
<td>30</td>
<td>121</td>
<td>24</td>
<td>48</td>
<td>48</td>
<td>B. Communior</td>
</tr>
<tr>
<td>31</td>
<td>201</td>
<td>48</td>
<td>48</td>
<td>-</td>
<td>B. Aerogenes</td>
</tr>
<tr>
<td>32</td>
<td>202</td>
<td>24</td>
<td>24</td>
<td>-</td>
<td>B. Aerogenes</td>
</tr>
<tr>
<td>33</td>
<td>203</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>B. Communior</td>
</tr>
<tr>
<td>34</td>
<td>204</td>
<td>48</td>
<td>64</td>
<td>-</td>
<td>B. Aerogenes</td>
</tr>
<tr>
<td>35</td>
<td>205</td>
<td>24</td>
<td>24</td>
<td>-</td>
<td>B. Aerogenes</td>
</tr>
<tr>
<td>36</td>
<td>206</td>
<td>72</td>
<td>48</td>
<td>48</td>
<td>B. Communior</td>
</tr>
<tr>
<td>37</td>
<td>207</td>
<td>24</td>
<td>24</td>
<td>-</td>
<td>B. Communior</td>
</tr>
<tr>
<td>38</td>
<td>208</td>
<td>48</td>
<td>24</td>
<td>-</td>
<td>B. Aerogenes</td>
</tr>
<tr>
<td>39</td>
<td>209</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>B. Communior</td>
</tr>
<tr>
<td>40</td>
<td>301</td>
<td>48</td>
<td>24</td>
<td>-</td>
<td>B. Aerogenes</td>
</tr>
<tr>
<td>41</td>
<td>302</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>B. Communior</td>
</tr>
<tr>
<td>42</td>
<td>304</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>B. Communior</td>
</tr>
<tr>
<td>No</td>
<td>Name</td>
<td>Lact</td>
<td>Sacch</td>
<td>Buty</td>
<td>Saltn</td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>43</td>
<td>505</td>
<td>48</td>
<td>24</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>307</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>308</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>309</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>401</td>
<td>24</td>
<td>24</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>403</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>404</td>
<td>24</td>
<td>24</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>406</td>
<td>24</td>
<td>24</td>
<td>-</td>
<td>48</td>
</tr>
<tr>
<td>51</td>
<td>506</td>
<td>24</td>
<td>24</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>507</td>
<td>72</td>
<td>24</td>
<td>-</td>
<td>48</td>
</tr>
<tr>
<td>53</td>
<td>508</td>
<td>24</td>
<td>24</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>509</td>
<td>24</td>
<td>-</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>510</td>
<td>24</td>
<td>24</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>56</td>
<td>511</td>
<td>24</td>
<td>24</td>
<td>-</td>
<td>24</td>
</tr>
<tr>
<td>57</td>
<td>512</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>58</td>
<td>513</td>
<td>24</td>
<td>24</td>
<td>-</td>
<td>24</td>
</tr>
<tr>
<td>59</td>
<td>514</td>
<td>24</td>
<td>24</td>
<td>48</td>
<td>24</td>
</tr>
<tr>
<td>60</td>
<td>515</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>61</td>
<td>516</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>517</td>
<td>24</td>
<td>24</td>
<td>-</td>
<td>24</td>
</tr>
<tr>
<td>63</td>
<td>518</td>
<td>24</td>
<td>24</td>
<td>-</td>
<td>24</td>
</tr>
<tr>
<td>64</td>
<td>519</td>
<td>24</td>
<td>24</td>
<td>48</td>
<td>24</td>
</tr>
<tr>
<td>65</td>
<td>520</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>66</td>
<td>521</td>
<td>24</td>
<td>24</td>
<td>-</td>
<td>48</td>
</tr>
<tr>
<td>67</td>
<td>522</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>523</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>69</td>
<td>524</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>70</td>
<td>601</td>
<td>24</td>
<td>24</td>
<td>-</td>
<td>48</td>
</tr>
<tr>
<td>71</td>
<td>602</td>
<td>24</td>
<td>24</td>
<td>-</td>
<td>24</td>
</tr>
<tr>
<td>72</td>
<td>603</td>
<td>24</td>
<td>24</td>
<td>48</td>
<td>24</td>
</tr>
<tr>
<td>73</td>
<td>604</td>
<td>24</td>
<td>24</td>
<td>48</td>
<td>-</td>
</tr>
<tr>
<td>74</td>
<td>605</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>75</td>
<td>606</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>76</td>
<td>607</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>77</td>
<td>608</td>
<td>24</td>
<td>24</td>
<td>-</td>
<td>24</td>
</tr>
<tr>
<td>78</td>
<td>609</td>
<td>24</td>
<td>24</td>
<td>48</td>
<td>-</td>
</tr>
<tr>
<td>79</td>
<td>610</td>
<td>24</td>
<td>24</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>611</td>
<td>24</td>
<td>24</td>
<td>-</td>
<td>24</td>
</tr>
<tr>
<td>81</td>
<td>612</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>82</td>
<td>613</td>
<td>24</td>
<td>24</td>
<td>-</td>
<td>24</td>
</tr>
<tr>
<td>83</td>
<td>614</td>
<td>24</td>
<td>24</td>
<td>48</td>
<td>-</td>
</tr>
<tr>
<td>84</td>
<td>615</td>
<td>24</td>
<td>24</td>
<td>-</td>
<td>24</td>
</tr>
<tr>
<td>85</td>
<td>616</td>
<td>24</td>
<td>24</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Data - Jackson's Classification

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Strain</th>
<th>Saccharose (P)</th>
<th>Dextrose (P)</th>
<th>Salicine (P)</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>86</td>
<td>707 4:1</td>
<td></td>
<td></td>
<td></td>
<td>B. Acidi-lacti</td>
</tr>
<tr>
<td>87</td>
<td>909 4:1</td>
<td>24</td>
<td>60</td>
<td>24</td>
<td>B. Communior</td>
</tr>
<tr>
<td>88</td>
<td>11 5:4</td>
<td></td>
<td>40</td>
<td>24</td>
<td>B. Communis</td>
</tr>
<tr>
<td>89</td>
<td>407 2:4</td>
<td>48</td>
<td>60</td>
<td>48</td>
<td>B. Communior</td>
</tr>
<tr>
<td>90</td>
<td>512 4:8</td>
<td>24</td>
<td></td>
<td>24</td>
<td>B. Aerogenes</td>
</tr>
<tr>
<td>91</td>
<td>611 2:0</td>
<td>24</td>
<td>60</td>
<td>24</td>
<td>B. Communior</td>
</tr>
<tr>
<td>92</td>
<td>612 4:5</td>
<td></td>
<td>40</td>
<td>24</td>
<td>B. Communis</td>
</tr>
<tr>
<td>93</td>
<td>701 2:0</td>
<td>24</td>
<td>40</td>
<td>24</td>
<td>B. Communior</td>
</tr>
<tr>
<td>94</td>
<td>703 2:0</td>
<td>24</td>
<td>60</td>
<td>48</td>
<td>B. Communior</td>
</tr>
<tr>
<td>95</td>
<td>706 2:0</td>
<td></td>
<td>60</td>
<td>48</td>
<td>B. Communis</td>
</tr>
<tr>
<td>96</td>
<td>708 4:8</td>
<td></td>
<td></td>
<td></td>
<td>B. Aerogenes</td>
</tr>
<tr>
<td>97</td>
<td>709 2:4</td>
<td></td>
<td></td>
<td></td>
<td>B. Acidi-lacti</td>
</tr>
<tr>
<td>98</td>
<td>710 2:0</td>
<td>24</td>
<td></td>
<td>24</td>
<td>B. Aerogenes</td>
</tr>
<tr>
<td>99</td>
<td>710 2:4</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>B. Communior</td>
</tr>
<tr>
<td>100</td>
<td>802 2:4</td>
<td></td>
<td></td>
<td></td>
<td>B. Acidi-lacti</td>
</tr>
<tr>
<td>101</td>
<td>805 5:4</td>
<td></td>
<td></td>
<td></td>
<td>B. Acidi-lacti</td>
</tr>
<tr>
<td>102</td>
<td>811 5:4</td>
<td></td>
<td></td>
<td>24</td>
<td>B. Acidi-lacti</td>
</tr>
<tr>
<td>103</td>
<td>812 2:4</td>
<td></td>
<td>40</td>
<td>24</td>
<td>B. Communis</td>
</tr>
<tr>
<td>104</td>
<td>904 2:0</td>
<td>24</td>
<td>60</td>
<td>24</td>
<td>B. Communior</td>
</tr>
<tr>
<td>105</td>
<td>907 4:1</td>
<td>24</td>
<td></td>
<td>24</td>
<td>B. Aerogenes</td>
</tr>
<tr>
<td>106</td>
<td>910 2:4</td>
<td>24</td>
<td>70</td>
<td>48</td>
<td>B. Communior</td>
</tr>
</tbody>
</table>

Summary

106 Cultures (where two organisms from the same sample gave identical reactions only one was included to make the above total).

1. Number of samples without Lactose check: 8
2. Number of samples B. Communior: 42
3. Number of samples B. Aerogenes: 37
4. Number of samples B. Acidi-lacti: 11
5. Number of samples B. Communis: 8

Key to Jackson's Classification

<table>
<thead>
<tr>
<th>Lactose</th>
<th>Saccharose</th>
<th>Dextrose</th>
<th>Deucitol</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td></td>
<td>+</td>
<td>B. Communior</td>
</tr>
<tr>
<td>2.</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>B. Communis</td>
</tr>
<tr>
<td>3.</td>
<td>+</td>
<td></td>
<td>+</td>
<td>B. Aerogenes</td>
</tr>
<tr>
<td>4.</td>
<td>+</td>
<td></td>
<td>-</td>
<td>B. Acidi-lacti</td>
</tr>
</tbody>
</table>
Map of Rolla Quadrangle, Showing Location of the four Sections of the Topographic Map, Shown on Pages 76 to 79
Section 2 of Map, Showing Location of Water Sample Sources.
Section 2, of Map, Showing Location of Water Sample Sources.
Section 3, of Map, Showing Location of Water Sample Sources.
Section 4 of Map, Showing Location of Water Sample Sources.
Explanation of Tables. Page 1.

Table 1. Complete tests of the 27 pure cultures.

This table gives the number, and the name of the original sample with its source, the date of securing the sample and the weather conditions. It gives all the reactions to the various media, noting the time at which the first positive reactions were noted.

Table 2. A study of reactions and classifications of the 27 pure cultures. Here a comparison is made for fecal and non-fecal indications as determined in the various classifications. A determination of origin from the 4 reactions of Methyl Red, Voges Proskauer, Uric Acid, and Citrate media shows 13 as non-fecal, 10 as fecal and 4 indeterminate. This is based on a majority agreement from the above media. In the case of 18 cultures there is perfect correlation of the four media. Voges Proskauer leads the high correlation, determining 22 out of the 23 reactions; Methyl Red determines 21; Uric acid, 19; and citrate medium, 18. This is a high correlation in each case. In the cases where the 4 reactions agree the classifications also have a high correlation showing the cultures giving the same to be strongly typical. 10 out of the 11 cultures giving perfect agreement in the media also give perfect correlation with all classifications. Only in 3 cases out of the 27 does the classifications help overrule the indication of the 4 media.
Explanations of the Tables.

Table 3. Pure cultures in Levine's Classification (also atyp.)

The Voges Proskauer (V.P.), Methyl Red (M.R.), Uric Acid, motility and gelatin reactions were considered as primary and any deviation from the specified reactions caused the culture to be classed as atypical. As shown in the table, 10 cultures are **X**typical while 17 cultures are classed as atypical and are divided into 11 groups.

According to Levine (pg 37 Bulletin 62 Iowa State College) this large variation is to be anticipated. "A very serious objection to such classifications as those of MacConkey, Bergey and De Shan, and Jackson is their extreme flexibility and complexity; for as the number of fermentable substances or other characters observed increases, the number of **X** "varieties" increases geometrically (approaching infinity) and soon produces a most unwieldy scheme. Thus for eight characters there are 256 possible combinations or "varieties". This number rises to 1,024 with 10 characters and to 65,536 when 16 tests are considered." This does not apply closely to Levine's Classification for ordinarily the characters are constant and the classification covers a large group of X organisms. But there is known to exist (especially on first isolations) small groups of atypical reacting organisms. A special study is made of this by Rahlman and Sehn (Journal American Water Works Assn., March, 1924).
Explanation of Tables.

Table 4. By Pahlman and Sohn in "Colon-aerogenes differentiation at Cincinnati" Journal Am. W. W. Assn., March 1924. Atypical cultures were given especial study by these men and the results obtained after repeat and re-rejuvenated tests are noted in the tables. Only 4 reactions are used: V.P., N.R., Uric Acid, and Gelatin liquefaction.

Of the 27 cultures; XXXXX are typical E. coli and 7 are typical E. aerogenes. This makes 52.3% typical.

Table 5. Winslow, Kligler & Rothberg; 1919. (Jour. Bact. IV, 42)

The 27 pure cultures based on dulcitol, salicin, lactose, saccharose, V.P., N.R., Litmus Milk, indol, motility and gelatin reactions, give 6 typical cultures and 21 atypical.

Table 6. Species X of genera Escherichia and Aerobacter of the tribe bacteriae, according to Bergey's Manual of Determinative Bacteriology, 1923.

Table 7. Detailed tests of 21 isolated cultures. These cultures were carried along in parallel tests with the same media batches as the 27 pure cultures. At a late test they were to be definitely or doubtfully contaminated, but they are retained in the data for their value as check tests.

Tables 8 and 9. Lactose Gas Data from 139 Water Samples. The data is summarized at the bottom of Table 9.

Tables 10, 11 & 12. Data on 106 cultures according to Jackson's Classification. Due to the rather low value of correlation of media used in this classification as compared with Methyl Red, Voges Proskauer, and Uric Acid this data is not as important as the more complete data of the 27 pure cultures.

Table 13. Map of the Rolla Quadrangle.

Tables 14, 15, 16 & 17. Sectional maps of part of Rolla Quadrangle. Topographic Maps showing the location of the various water sample sources. The data on location of springs given in this thesis may be of future value in connection with special studies, so all data of this nature has been included.

Summary of the total number of media tubes and plates inoculated and studied in connection with this thesis.

Agar Slants (plain) 84; eosin-methylene blue Agar, 170;
Endo agar, 40; Nasse agar, 83; lactose tubes, 360;
Dulcitol tubes, 170; saccharose (Sucrose) tubes, 136;
Salvin tubes, 94; dextrose (Glucose), 54; gelatin tubes, 54;
Litmus milk, 54; indol (broth), 109; methyl red (broth), 54;
Uric Acid, 54; smith tube dextrose, 29; citrate, 29.

Total tubes and plates inoculated in 1960.
CONCLUSIONS:

1. As to potability of water by classifications.

Potability of water is determined largely by the absence of sewage contamination. Usually, lactose fermenting bacteria of the colon-aerogenes group are sought for in testing for sewage contamination. The absence of lactose fermenters is considered as direct evidence of potability. The presence of lactose fermenters of the colon-aerogenes group, however, does not directly indicate sewage pollution, as B. Aerogenes is widely distributed in nature and rarely is of fecal origin.

The classifications of MacConkey, Jackson, Levine, Dahlman and Schu, Winslow Kligler & Rothberg, and Bergey's Manual, all attempt to classify organisms of this group and to relate these classes to their habitat. The author has been unable to classify MacConkey's types according to habitat so has given that classification no further study. Jackson classes the dulcitol gas formers, B. communis and B. communis as of fecal origin. Taking as of fecal origin the majority indicators of the V.P., Mn., Uric Acid, and Citrate reactions (and vice versa for non-fecal), Jackson's classification gives 61% correct results, out of 23 of the pure cultures. Bergey's Manual gives a greatly modified classification of this ESSEX colon-aerogenes group and as there is no backing of a large number of tests and of the corresponding statistical data, the author could make out very little differential value for this grouping.
CONCLUSIONS: Page 2.

1. As to potability of water by classifications. (Cont).

The 10 reactions of Finslow, Kliger & Rothberg gave only 6 typical organisms out of the 27 pure cultures. Levine's classification and that used by Dahlman and Sohn are both based on statistical studies and are the only classifications of present day use. However, their benefit is limited by the number of atypical cultures which appear from the plating method of isolation. Levine with five reactions, E.R., V.P., Uric Acid, Fatality and Gelatin liquefaction gives 17(63%) atypical organisms out of the 27 pure(plated) cultures. Dahlman and Sohn with E.R., V.P., Uric Acid and Gelatin liquefaction gives 11(41%) atypical organisms out of the 27 pure cultures. It might be noted here that all classifications (where typical) and all media gave identical origin indications in 10 out of the 27 cultures. Five were shown to be of fecal and five of non-fecal origin. Considering the lack of indication (often amounting to more than 50%) due to the atypical reactions the author believes that he has as valuable an indicator by taking a majority indication of the four Uric reactions, E.R., V.P., Uric Acid and Citrate medium, and letting that determine the origin(fecal or non-fecal) of the culture.
CONCLUSIONS:

2. Differential value of the tests.

Large group studies by Levine, Kosel and others in connection with Methyl Red, Voges Proskauer, Uric Acid and Citrate reactions have shown them to be of primary value as differential tests (for fecal or non-fecal origin). At present motility, indol production and gas production from carbohydrates are in a secondary place with respect to differential value.

In 23 out of the 27 pure cultures the M.R., V.P., Uric Acid and Citrate reactions gave majority indicators for either fecal or non-fecal origin (in the 4 other cultures the indications were 2 and 2). Citrate gave the correct (majority) indication in 18 cultures; Uric Acid, in 19 cultures; Methyl Red, in 21 cultures; and Voges Proskauer, in 22 cultures. The almost perfect correlation of the M.R. and V.P. reactions fits in very well with studies of recent tests. Very likely about 75% of the 23 cultures given IMMUNITY here are of the origin indicated. This leaves the field of fecal and non-fecal organisms of this group very loosely indicated. When, added to this it is seen that there is practically no differential test for the organisms of this group that are of human and lower animal fecal origin, then the problem is truly a difficult one.
REFERENCES.

REFERENCES.
17. Penfold, 1912. On the specificity of bacterial mutation, with a resume of the results of an examination of bacteria found in feces and urine, which undergo mutation when grown on lactose media. Jour. Hygiene, XII., 195.
REFERENCES.

25. Winslow and Delloff, 1922. The relative effect of certain triphenyl-methane dyes upon the growth of bacilli of the colon group in lactose broth and lactose bile. Journal of Infectious Diseases, XXXI., 302.

