1966

A comparison of the LR and QR transformations for finding the eigenvalues for real nonsymmetric matrices

Susan Clara Hanson

Follow this and additional works at: http://scholarsmine.mst.edu/masters_theses

Part of the Computer Sciences Commons

Department: Computer Science

Recommended Citation

A COMPARISON OF THE
LR AND QR TRANSFORMATIONS FOR
FINDING THE EIGENVALUES
OF REAL NONSYMMETRIC MATRICES

BY
SUSAN CLARA HANSON

A
THESIS
submitted to the faculty of the
UNIVERSITY OF MISSOURI AT ROLLA
in partial fulfillment of the requirements for the
Degree of
MASTER OF SCIENCE IN COMPUTER SCIENCE
Rolla, Missouri
1966

Approved by

Ralph E. Lee (Advisor)
Billy Estillett

Robert W. Wellen
Herbert R. Alcom
ABSTRACT

The LR and QR algorithms, two of the best available iterative methods for finding the eigenvalues of a nonsymmetric matrix associated with a system of linear homogeneous equations, are studied. These algorithms are discussed as they apply to the determination of the eigenvalues of real nonsymmetric matrices.

A comparison of the speed and accuracy of these transformations is made. A detailed discussion of the criterion for convergence and the numerical difficulties which may occur in the computation of multiple and complex conjugate eigenvalues are included.

The results of this study indicate that the QR algorithm is the more successful method for finding the eigenvalues of a real nonsymmetric matrix.
ACKNOWLEDGEMENT

The author wishes to express her sincere appreciation to Professor Ralph E. Lee, Director of the Computer Science Center, for his help in the selection of this subject and for his guidance and suggestions during the preparation of this thesis.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iii</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. REVIEW OF LITERATURE</td>
<td>3</td>
</tr>
<tr>
<td>III. DISCUSSION AND COMPARISON OF ALGORITHMS</td>
<td>24</td>
</tr>
<tr>
<td>IV. RESULTS AND CONCLUSIONS</td>
<td>32</td>
</tr>
<tr>
<td>APPENDIX A. Programs</td>
<td>35</td>
</tr>
<tr>
<td>APPENDIX B. Numerical Results</td>
<td>42</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>47</td>
</tr>
<tr>
<td>VITA</td>
<td>48</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

Iterative methods for finding all the eigenvalues of nonsymmetric matrices have appeared only recently. The LR algorithm, which can be regarded as a development of the QD algorithm, was introduced by Rutishauser (9). It is based on the successive triangular decomposition of a matrix. A sequence of similar matrices is generated whose limit is triangular. A modified procedure for the LR algorithm improves numerical stability. It uses a modified decomposition with interchanges.

The QR algorithm, later developed by Francis (2), (3), makes use of unitary transformations instead of triangular decomposition. A variation of this algorithm involves a double-shift technique for combining complex conjugate shifts of origin while using Householder's method. It was developed for finding complex conjugate eigenvalues of real matrices and is known as the double QR procedure.

The LR and QR transformations are applicable to the calculation of general matrices, but a large number of computational operations are required. Therefore, it is desirable to use a matrix of condensed form. Both of these transformations preserve the form of a Hessenberg or almost triangular matrix.

The preliminary reduction of a matrix to Hessenberg form can be accomplished in several ways. However, in this paper we will be concerned with two methods: The Householder transformation using elementary orthogonal matrices and Gaussian elimination using stabilized elementary matrices.

The purpose of this study is to compare the LR and QR transformations for finding eigenvalues of real nonsymmetric matrices. Categories of
matrices which may cause the algorithm to fail are discussed. Shifts of origin and deflation are incorporated to improve convergence. Computational aspects, such as speed and accuracy are discussed, and a number of sample computations using these algorithms are cited.
II. REVIEW OF LITERATURE

The LR algorithm for finding all the eigenvalues of an arbitrary matrix, introduced by Rutishauser (9) in 1955, is an interpretation of his QD scheme. Its basis is the triangular decomposition of a matrix. The matrix A_k is factorized into the product of a unit left triangular matrix L and a right triangular matrix R such that

$$LR = A$$ \hspace{1cm} (2.1)

The LR method begins with the original matrix A_1. A sequence of matrices A_k is then formed such that A_{k+1} is derived from A_k by decomposing it into L_k and R_k and forming the product of these in reverse order.

$$A_k = L_k R_k$$ \hspace{1cm} (2.2)

$$A_{k+1} = R_k L_k \quad \text{for } k=1,2,\ldots$$

In this process, a series of similarity transformations are performed on the original matrix A_1 each of which consists of premultiplication by a matrix which eliminates the subdiagonal elements and post-multiplication by its inverse.

$$A_k = R_{k-1} L_{k-1} = L_{k-1}^{-1} A_{k-1} L_{k-1}$$ \hspace{1cm} (2.3)

$$= L_{k-1}^{-1} \ldots L_2^{-1} L_1^{-1} A_1 L_1 L_2 \ldots L_{k-1}$$

Equation (2.3) can be rewritten as

$$L_1 L_2 \ldots L_{k-1} A_k = A_1 L_1 L_2 \ldots L_{k-1}$$ \hspace{1cm} (2.4)

Using $A_k = L_k R_k$ and (2.4) it follows that

$$L_1 L_2 \ldots L_k R_k = A_1 L_1 L_2 \ldots L_{k-1}$$

$$L_1 L_2 \ldots L_{k-1} R_{k-1} = A_1 L_1 L_2 \ldots L_{k-2}$$

and so on.
If
\[T_k = L_1 L_2 \ldots L_k \] \tag{2.5}
and
\[U_k = R_k \ldots R_2 R_1 \]
where \(T_k \) is unit left triangular and \(U_k \) is right triangular, then
\[
T_k U_k = L_1 L_2 \ldots L_{k-1} (L_k R_k) R_{k-1} \ldots R_2 R_1 \\
= L_1 L_2 \ldots L_{k-1} A_k R_{k-1} \ldots R_2 R_1 \\
= A_1 L_1 L_2 \ldots L_{k-1} R_{k-1} \ldots R_2 R_1 \\
= A^k_1 L_1 L_2 \ldots L_{k-2} R_{k-2} \ldots R_2 R_1 \\
= A^k_1.
\] \tag{2.6}

The triangular decomposition of \(A^k_1 \) is \(T_k U_k \). All of the matrices \(A_k \)
have the same eigenvalues since they are similar. In a proof of convergence Rutishauser (9) shows that, under certain conditions, \(A_k \) tends to a right triangular matrix as \(k \to \infty \). The diagonal elements of this right triangular matrix are the eigenvalues of \(A_k \) appearing in decreasing order of magnitude from left to right.

The process of triangular decomposition is discussed by Faddeev and Faddeeva (1), Ralston (8), and Wilkinson (13). The problem is that of determining the matrices \(L \) and \(R \) of (2.1) directly from \(A \) without going through any intermediate steps. Wilkinson (13) assumes that the first (\(r-1 \)) rows of \(L \) and \(R \) can be determined by equating the elements in the first (\(r-1 \)) rows of both sides of equation (2.1). The elements in the \(r^{th} \) row are equated so that
\[
\begin{align*}
&d_{r1} u_{11} = a_{r1} \\
&d_{r1} u_{12} + d_{r2} u_{22} = a_{r2} \\
&d_{r1} u_{1r} + d_{r2} u_{2r} + \ldots + d_{rr} u_{rr} = a_{rr} \\
&d_{r1} u_{11} + r_{+1} + d_{r2} u_{21} + \ldots + d_{rr} u_{r1} + \ldots + d_{rr} u_{rr} = a_{r1} \\
&d_{r1} u_{1n} + d_{r2} u_{2n} + \ldots + d_{rr} u_{rn} = a_{rn}
\end{align*}
\] \tag{2.7}
The elements \(d_{r1}, d_{r2}, ..., d_{r,r-1} \) are uniquely determined from equations 1 to \((r-1)\) of (2.7). Since \(L \) is unit left triangular, then \(d_{rr} = 1 \), and the \(r^{th} \) equation determines \(u_{rr} \). Then \(u_{r,r+1} \) to \(u_{rn} \) are uniquely determined by equation (2.8). This process can be easily verified by an example. The elements were determined in the following order: First row of \(R \), second row of \(L \); second row of \(R \) and so forth. Another order in which they can be determined is the first row of \(R \), first column of \(L \); second row of \(R \), second column of \(L \), and so forth.

Rutishauser (9) generalizes equations (2.7) and (2.8) for computing \(L \) and \(R \) into recursion formulas.

\[
\begin{align*}
 u_{ij} &= a_{ij} - \sum_{k=1}^{j-1} d_{ik} u_{kj} \quad \text{for } i=1,2,...,j \\
 d_{ij} &= a_{ij} - \sum_{k=1}^{j-1} d_{ik} u_{kj} \quad \text{for } i=j+1,...,n
\end{align*}
\]

(2.9)

Wilkinson (12), (13) states that if the triangular decomposition of a non-singular matrix \(A \) exists, it is unique. For if

\[
A = L_1 R_1 = L_2 R_2
\]

(2.10)

then since

\[
A = |L_1| |R_1| = |L_2| |R_2|
\]

(2.11)

\(R_1 \) and \(R_2 \) are both non-singular. Therefore,

\[
L_2^{-1} L_1 = R_2 R_1^{-1}
\]

(2.12)

The matrix \(L_2^{-1} L_1 \) is unit left triangular, and the matrix \(R_2 R_1^{-1} \) is right triangular. Hence each side of (2.12) is the identity matrix and \(L_1 = L_2 \), \(R_1 = R_2 \).
There are simple matrices for which triangular decomposition
breaks down. An example cited by Wilkinson (13) of a non-singular, well-
conditioned matrix A which does not have a triangular decomposition is

$$
A = \begin{bmatrix}
1 & 2 & 3 \\
2 & 4 & 1 \\
4 & 6 & 7 \\
\end{bmatrix}
$$

Substituting in equation (2.9), the diagonal element $u_{22} = 0$, and the
equation defining d_{32} is $4d_2 + d_{32} * 0 = 6$. Hence, d_{32} is undefined,
and the matrix (2.13) has no decomposition.

Another case is that of a matrix A whose decomposition is not unique.

$$
A = \begin{bmatrix}
1 & 1 & 1 \\
2 & 2 & 1 \\
3 & 3 & 1 \\
\end{bmatrix}
$$

Once more substituting in (2.9), the diagonal element $u_{22} = 0$, but the
equation defining d_{32} is $3d_1 + d_{32} * 0 = 3$. Thus d_{32} is arbitrary, and
the matrix A of (2.14) has an infinite number of triangular decomposi-
tions. Note that the matrix in (2.14) is singular.

The relationship between triangular decomposition and Gaussian
elimination is illustrated by Wilkinson (12). Gaussian elimination is an
elementary procedure which may be used to reduce a matrix to right tri-
angular form. It consists of $(n-1)$ steps, each of which eliminate the
elements of a column below the diagonal. Before the rth step a non-
singular matrix X_1 has been reduced to the form X_r shown below for
$n = 6, \ r = 3$.
On the r^{th} step matrix X_r is premultiplied by an elementary matrix M_r. It may be illustrated for $n = 6, r = 3$.

\[
M_3 = \begin{bmatrix}
1 & 1 & -m_{43} & 1 \\
1 & -m_{53} & 1 \\
1 & -m_{63} & 1 \\
\end{bmatrix}
\]

Where $m_{ir} = \frac{X_{ir}}{X_{rr}}$ for $i = r+1, \ldots, n$. In general, the premultiplication by M_r results in the subtraction of a multiple of the r^{th} row from each of the rows ($r+1$) to n. It is important to note that rows 1 to $(r-1)$ are unaltered in the r^{th} step, and the zeros introduced by previous steps remain unaltered.

The matrix resulting from the final step is a right triangular matrix X_n

\[
M_{n-1} \cdots M_2 M_1 X_1 = X_n
\]

Premultiplying each side of (2.17) by the inverse of $(M_{n-1} \cdots M_2 M_1)$ gives

\[
X_1 = M_1^{-1} M_2^{-1} \cdots M_{n-1}^{-1} X_n
\]

The matrix M_r^{-1} differs from M_r only in the signs of the subdiagonal elements, and the matrix $M_1^{-1} M_2^{-1} \cdots M_{n-1}^{-1}$ is unit left triangular; hence, in general,

\[
X_1 = MX_n
\]

where M is unit left triangular and X_n is right triangular. Therefore, since the decomposition of a non-singular matrix is unique, the M and X_n of Gaussian elimination must be identical with the L and R of triangular decomposition. The importance of this relationship lies in the fact
that the failure and non-uniqueness of the decomposition occurs in the same circumstances as in the Gaussian elimination procedure without pivoting.

In Gaussian elimination, it is well-known that numerical stability is maintained by the introduction of interchanges. A modified procedure which removes instability was introduced by Wilkinson (13) for the LR algorithm.

It was shown in (2.3) that one iteration of the orthodox LR transformation to form A_k consists of premultiplying the matrix A_{k-1} by a left triangular matrix L_{k-1}^{-1} to produce a right triangular matrix R_{k-1}. The similarity transformation is then completed by post-multiplying R_{k-1} by L_{k-1}. Parlett (7) explains the modified LR transformation by replacing L_{k-1} by a matrix L'_{k-1}. This matrix L'_{k-1} is a product of elementary matrices as is L_{k-1}. However, L'_{k-1} has an interchange matrix inserted between consecutive elementary matrices and therefore, is not usually triangular.

If we use M'_1 from (2.16) and let the X_1 and X_n of (2.17) equal A and R respectively, then

$$M_{n-1} \, I_{n-1}, (n-1)' \, \ldots \, M_2, I_2, 2', M_1, I_1, 1', A = R.$$ \hspace{1cm} (2.20)

In the rth step we premultiply by a stabilized elementary matrix $I'_{r', r, r'}$. The premultiplication by $I_{r', r}$ results in the interchange of rows r and r' where $r' \neq r$. The index r' is defined by $a_{x', r} = \max_{i=r, \ldots, n} |a_{i,r}|$ so that the diagonal element is not exceeded in magnitude by any element below it.

This process of interchanging is usually referred to as 'partial pivoting.' A similarity transformation of A can now be completed by post-multiplying R in (2.20) by L' which may be written as
\[L' = I_{1,1}' M^{-1} I_{2,2}' M^{-1} \cdots I_{n-1,(n-1)}' M^{-1} \]

This gives
\[M_{n-1} I_{n-1,(n-1)}' \cdots M_2 I_{2,2}' M_1 I_{1,1}' \Lambda I_{1,1}' \]
\[= R I_{1,1}' M_{n-1} I_{2,2}' M_{n-2} \cdots I_{n-1,(n-1)}' M_{n-1} \]

\[(2.21) \]

If no interchanges are necessary so that \(I_{r,r'} = I \) for \(r = 1, 2, \ldots, (n-1) \), the product preceding \(A \) in (2.21) would be the matrix \(L^{-1} \) of (2.16) so that \(L^{-1} A = R \) or \(A = LR \) as in (2.1). Also, the right side of (2.21) would be \(RL \). The modified LR transformation is described by Wilkinson (13) as the reduction of the matrix \(A_k \) to a right triangular matrix \(R_k \) using Gaussian elimination with interchanges. Then \(A_{k+1} \) is formed by post-multiplying \(R_k \) by the inverse of the factors used in the reduction.

To illustrate this new factorization of the matrix \(A \), consider the relationship between \(A_1 \) and \(A_2 \) for a case when \(n = 5 \). Using the left side of equation (2.21), it follows that

\[A_2 = \begin{bmatrix} M_4 & I_{4,4}' & M_3 & I_{3,3}' & M_2 & I_{2,2}' & M_1 & I_{1,1}' \end{bmatrix} A_1 \begin{bmatrix} I_{1,1}' \\ M_1^{-1} I_{2,2}' & M_2^{-1} I_{3,3}' & M_3^{-1} I_{4,4}' & M_4^{-1} \end{bmatrix} \]

\[= \begin{bmatrix} M_4 & I_{4,4}' & M_3 & (I_{4,4}' I_{4,4}') & I_{3,3}' & M_2 & (I_{3,3}' I_{4,4}') & I_{4,4}' & I_{4,4}' & I_{3,3}' I_{4,4}' \end{bmatrix} \]

\[\begin{bmatrix} I_{4,4}' & I_{3,3}' & I_{2,2}' & I_{1,1}' \end{bmatrix} A_1 X \]

\[X \begin{bmatrix} I_{1,1}' & (I_{2,2}' I_{3,3}' I_{4,4}' I_{4,4}' I_{3,3}' I_{2,2}' M_1^{-1} I_{2,2}' (I_{3,3}' I_{4,4}' I_{4,4}') M_3^{-1} I_{4,4}' M_4^{-1} \end{bmatrix} \]
The terms in parentheses are readily seen to be equal to I. Regrouping the parentheses in (2.22) and letting $I_{4,4}, I_{3,3}, I_{2,2}, I_{1,1} = p^{-1}$

$$A_2 = \left((M_4) (I_{4,4}, M_3, I_{4,4}) (I_{4,4}, I_{3,3}, M_2, I_{3,3}, I_{4,4}) \right) \left((I_{4,4}, I_{3,3}, I_{2,2}, M_1, I_{2,2}, I_{3,3}, I_{4,4}) p^{-1} \right) A_1 X$$

(2.23)

$$X \left[p (I_{4,4}, I_{3,3}, I_{2,2}, M_1 I_{2,2}, I_{3,3}, I_{4,4}) (I_{4,4}, I_{3,3}, M_2, I_{3,3}, I_{4,4}) (I_{4,4}, I_{3,3}, M_1 I_{4,4}, (M_4)^{-1}) \right]$$

The matrices in the parenthesis of (2.23) and hence their product L^{-1} are left triangular. The modified LR algorithm using elimination with interchanges from (2.20) corresponds to

$$A_1 = P_1 \widetilde{L}_1 R_1$$

(2.24)

The new iterate of A is given by

$$A_2 = P_1 \widetilde{L}_1 = L^{-1} P_1^{-1} A_1 P_1 \widetilde{L}_1$$

(2.25)

The matrix $P_1^{-1} A_1 P_1$ is A_1 with its rows and columns permuted. Since \widetilde{L}^{-1} and \widetilde{L} are left triangular, they are similar to $A_k = L_k^{-1} A_{k-1} L_{k-1}$.

Rutishauser's (9) proof of the convergence of the orthodox LR algorithm does not apply to the modified procedure. Wilkinson (13) states that if convergence to right triangular form does occur in the modified process and if none of the eigenvalues is zero, then, since the subdiagonal elements are tending to zero, the interchanges must ultimately cease. A satisfactory proof of convergence of the modified LR algorithm has not yet been published.

The LR algorithm is not suitable for full matrices because of the high volume of computations. Thus, it is necessary to reduce the original matrix to some condensed form which is invariant with respect to the LR transformation. One such form is the upper Hessenberg matrix which is an
almost triangular matrix with zeros in position \((i,j)\) for \(i > j + 1\).

A full matrix may be reduced to Hessenberg form in a stable manner by the use of similarity transformations.

One such method described in Wilkinson (10), (13) for reducing a matrix to this form is Gaussian elimination with pivoting on the maximum element. The original matrix \(A\) is reduced to upper Hessenberg form in \((n-2)\) steps. The \(r^{th}\) step eliminates the elements \((r + 2, r)\) through \((n,r)\). Before the \(r^{th}\) step, the matrix \(A\) has been reduced to the form shown before for \(n = 6\), \(r = 3\).

\[
A_{r-1} = \begin{bmatrix}
 h_{11} & h_{12} & x & x & x & x \\
 h_{12} & h_{22} & x & x & x & x \\
 0 & h_{32} & x & x & x & x \\
 0 & 0 & x & x & x & x \\
 0 & 0 & x & x & x & x \\
 0 & 0 & x & x & x & x
\end{bmatrix}
\quad (2.25)
\]

where the \(h_{ij}\) elements are those of the final Hessenberg matrix \(H\).

In the first step of the reduction, the original matrix \(A\) is premultiplied by \(M_1 I_{1,1}'\), where \(M_1\) is of the form defined in (2.16) and \(I_{1,1}'\) is the interchange matrix used in (2.20). This eliminates the \((3,1)\) to \((n,1)\) elements. The similarity transformation is completed by multiplying on the right by \(I_{1,1}' M_1^{-1}\) to produce the matrix

\[
M_1 I_{1,1}' A I_{1,1}' M_1^{-1}.
\]

Continue in this way for \((n-2)\) steps to produce the Hessenberg matrix.

\[
M_{n-2} I_{n-2,(n-2)'} \cdots M_2 I_{2,2}' M_1 I_{1,1}' A I_{1,1}' M_1^{-1} \quad (2.26)
\]

\[
I_{2,2}' M_2^{-1} \cdots I_{n-2,(n-2)'} M_{n-2}^{-1} = H.
\]
Wilkinson (11), (13) develops another method for the reduction of the original matrix. It is Householder's method which involves a similarity transformation using an elementary orthogonal matrix. Again, there are \((n-2)\) steps in this reduction. In the \(r^{th}\) step, zeros are introduced in the \(r^{th}\) column without destroying the zeros introduced in the previous \((r-1)\) steps. Immediately before the \(r^{th}\) step, matrix \(A\) has been reduced to a form illustrated in (2.25).

An orthogonal matrix \(P\) is defined by \(P = I - 2ww^T\) where \(w\) is a unit vector such that \(w^Tw = 1\). The vector \(w\) has \(n\) components, the first \(r\) of which are equal to zero. Then

\[
P_r = I - 2w_r w_r^T = I - u_r u_r^T / 2K_r^2
\]

(2.27)

where

\[
u_{ir} = 0 \quad \text{for} \quad i = 1, 2, \ldots, r
\]

(2.28)

\[
u_{r+1, r} = a_{r+1, r}, \quad S_r, \quad u_{ir} = a_{ir} \quad \text{for} \quad i = r+2, \ldots, n
\]

\[
S_r = (\frac{n}{i=r+1} a_{ir})^{1/2}, \quad 2K_r^2 = S_r^2 + a_{r+1, r} S_r
\]

For \(P\) to be as accurately orthogonal as possible, the sign of \(S\) in the equation defining \(u_{r+1, r}\) and \(2K_r^2\) must be taken as that of \(a_{r+1, r}\). The new value of \(a_{r+1, r}\) is computed directly to be \(\pm S\).

The matrix \(A_r\) is defined by the relation

\[
A_r = P_r^T A_{r-1} P_r \quad \text{for} \quad r = 2, \ldots, n-1.
\]

(2.29)

\(A_r\) is premultiplied by \(P_r^T\) such that

\[
P_r^T A_{r-1} = (I - u_r u_r^T / 2K_r^2) A_{r-1} = A_{r-1} - u_r (u_r^T A_{r-1}) / 2K_r^2 = F_r
\]

(2.30)

and post-multiplied by \(P_r\).

\[
A_r = P_r^T A_{r-1} P_r = F_r P_r = F_r (I - u_r u_r^T / 2K_r^2)
\]

\[= F_r - (F_r u_r) u_r^T / 2K_r^2
\]

(2.31)
If
\[u_r^T A_{r-1} = p_r^T \]
where \(p_r^T \) has its first \(r \) elements equal to zero because of the zeros in \(u_r \) and \(A_{r-1} \), then
\[F_r = A_{r-1} - (u_r / 2k_r^2) p_r^T \]
For the post-multiplication of \(q_r \) is defined by
\[F_r u_r = q_r. \]
The vector \(q_r \) has no zero components. Finally,
\[A_r = F_r - q_r (u_r / 2k_r^2)^T. \]
After \((n-2)\) steps of (2.29) the original matrix \(A \) is reduced to upper Hessenberg form.

The convergence to zero of the subdiagonal elements \(a^{(k)}_{ij} \) \((i > j)\) of \(A_k \) is usually determined by the quantities \((|\lambda_i| / |\lambda_j|)^k\) as \(k \to \infty \). In the case of a Hessenberg matrix, the only subdiagonal elements are the \(a^{(k)}_{r+1,r}, r = 2, \ldots, n \). Convergence is linear and depends on the ratios \(|\lambda_i| : |\lambda_j|\). If \(|\lambda_i / \lambda_j|\) is close to unity, convergence is slow. Slow convergence can easily be avoided by a simple acceleration technique involving shifts.

A scheme for shifting the origin was first suggested by Rutishauser (9) and later improved by Wilkinson (13). Let \(p_k \) be an approximation to \(\lambda_n \) where \(\lambda_n \) is the eigenvalue appearing in the \((n,n)\) position of \(A_k \). The LR transformation is applied to \((A_k - p_k I)\) rather than to \(A_k \). This matrix has eigenvalues \((\lambda_i - p_k)\). According to Parlett (7), \(a_{n,n-1} \) tends to zero as \((\lambda_n - p_k) / (\lambda_{r-1} - p_k) \) \(^k\).

The transformation produces a sequence of matrices defined by
\[A_k - p_k I = L_k R_k \]

and
\[R_k L_k + p_k I = A_{k+1} \] (2.36)

or alternatively
\[A_{k+1} = R_k L_k + p_k I = L_k^{-1} (A_k - p_k I) L_k + p_k I = L_k^{-1} A_k L_k. \] (2.37)

and the matrices are still similar to \(A_1 \).

In fact, from (2.37)
\[A_{k+1} = L_k^{-1} A_k L_k = L_k^{-1} L_{k-1}^{-1} A_{k-1} L_{k-1} L_k = L_k^{-1} \ldots \]
\[L_2^{-1} L_1^{-1} A_1 L_1 L_2 \ldots L_k \] (2.38)

or
\[L_1 L_2 \ldots L_k A_{k+1} = A_1 L_1 L_2 \ldots L_k \]

According to Wilkinson (13) this modification is described as the LR with shifts of origin and 'restoring' because the shift is added back at each stage. There is sometimes an advantage to using the 'non-restoring' process defined by
\[A_k = p_k I = L_k R_k \]

\[R_k L_k = A_{k+1} \] (2.39)

so that
\[A_{k+1} = R_k L_k = L_k^{-1} (A_k - p_k I) L_k = L_k^{-1} A_k L_k - p_k I \]
\[= L_k^{-1} (L_{k-1}^{-1} A_{k-1} L_{k-1} - p_{k-1} I) L_k - p_k I \] (2.40)
\[= L_k^{-1} L_{k-1}^{-1} A_{k-1} L_{k-1} L_k - (p_{k-1} + p_k) I \]

Continuing this argument as in (2.38)
\[A_{k+1} = L_k^{-1} (A_k - p_k I) L_k = L_k^{-1} \ldots L_1^{-1} A_1 L_1 \ldots \]
\[L_k - (p_1 + p_2 + \ldots + p_k) I \]
\[+ L_k^{-1} \ldots L_1^{-1} [A_1 - (p_1 + p_2 + \ldots + p_k) I] L_1 \ldots L_k. \] (2.41)
By using this technique, it may be observed that the eigenvalues of
\(A_{k+1} \) differ from those of \(A_k \) by \(k \sum_{i=1}^{k} p_i \).

Now, returning to the restoring process and showing that equation (2.6) holds for this modification

\[
\begin{align*}
L_1 L_2 \ldots L_{k-1} (L_k R_k) R_{k-1} \ldots R_2 R_1 \\
= L_1 L_2 \ldots L_{k-1} (A_k - p_k I) R_{k-1} \ldots R_2 R_1 \\
= (A_1 - p_k I) L_1 L_2 \ldots L_{k-1} R_{k-1} \ldots R_2 R_1 \\
= (A_1 - p_k I)(A_1 - p_{k-1} I) L_1 L_2 \ldots L_{k-2} R_{k-2} \ldots R_2 R_1 \\
= (A_1 - p_k I)(A_1 - p_{k-1} I) \ldots (A_1 - p_1 I)
\end{align*}
\]

(2.42)

Hence, using \(T_k \) and \(U_k \) defined as in (2.5), \(T_k U_k \) gives the triangular decomposition of

\[
\prod_{i=1}^{k} (A_1 - p_i I).
\]

A frequent choice of \(p_k \) is an eigenvalue of the 2 x 2 principal submatrix

\[
\begin{bmatrix}
\alpha_{n-1,n-1} & \alpha_{n-1,n} \\
\alpha_{n,n-1} & \alpha_{n,n}
\end{bmatrix}
\]

(2.43)

which is closest to \(a_{n,n} \). Ralston (8) states that the importance of choosing \(p_k \) in this manner is that it replaces the iteration's linear convergence \((|\lambda_n|/|\lambda_{n-1}|)^k\) with quadratic convergence \((|\lambda_n|/|\lambda_{n-1}|)^{2k}\).

Several other methods of choosing \(p_k \) will be discussed in Chapter III. This method of origin shifting accelerates the convergence of the last diagonal element of \(A \). When the remaining elements of row \(n \) are effectively zero, the element \(a_{nn}^{(k)} \) will be a good approximation to \(\lambda_n \).

The QR transformation proposed by Francis (2), (3) uses a decomposition of an arbitrary matrix \(A \) into the product of a unitary matrix \(Q \) and a right triangular matrix \(R \), A sequence of matrices can be defined
starting with $A = A_1$ such that

$$
A_k = Q_k R_k
$$

(2.44)

$$
A_{k+1} = R_k Q_k \quad \text{for } k = 1, 2, \ldots, n.
$$

A_{k+1} is formed by post-multiplying R_k by Q_k. This algorithm can also be written as a similarity transformation.

$$
A_k = R_{k-1} Q_{k-1} = Q_k^H A_{k-1} Q_{k-1} = Q_k^H \cdots Q_2^H A_1 Q_2 \cdots Q_{k-1}.
$$

(2.45)

Equation (2.45) gives

$$
Q_1 Q_2 \cdots Q_{k-1} A_k = A_1 Q_1 Q_2 \cdots Q_{k-1}.
$$

(2.46)

Francis (2) develops a fundamental result similar to that which Rutishauser (9) developed for the LR transformation. Using $A_k = Q_k R_k$ and equation (2.46), it follows that

$$
Q_1 Q_2 \cdots Q_k R_k = A_1 Q_1 Q_2 \cdots Q_{k-1}
$$

$$
Q_1 Q_2 \cdots Q_{k-1} R_{k-1} = A_1 Q_1 Q_2 \cdots Q_{k-2}
$$

and soon.

If $P_k = Q_1 Q_2 \cdots Q_k$ and $S_k = R_k R_{k-1} \cdots R_1$, where P_k is unitary and S_k is right triangular, then

$$
P_k S_k = Q_1 Q_2 \cdots Q_k R_k R_{k-1} \cdots R_1
$$

$$
= Q_1 Q_2 \cdots Q_{k-1} A_k R_{k-1} \cdots R_2 R_1
$$

$$
= A_1 Q_1 Q_2 \cdots Q_{k-1} R_{k-1} \cdots R_2 R_1
$$

$$
= A_1 Q_1 Q_2 \cdots Q_{k-2} R_{k-2} \cdots R_2 R_1
$$

from (2.46)

$$
= A_k
$$

(2.47)

Francis (2) proved that for any matrix A there exists a unitary matrix Q such that $A = QR$ where R is a right triangular matrix which has real non-negative, diagonal elements. Moreover, the Q is unique if A is non-singular. Thus the unitary-triangular decomposition of any square matrix exists, and, if the matrix is non-singular, the decomposition is
unique. There is no possibility for breakdown in the decomposition as in the QR transformation.

Francis (2), (3) proved that if A is a non-singular matrix with all eigenvalues of distinct moduli, then, as $k \to \infty$, the elements of A_k below the diagonal tend to zero, and the elements on the diagonal tend to the eigenvalues of A.

The factorization of a matrix A_k into Q_k and R_k involves the use of elementary unitary transformations. Instead of determining the matrix Q_k directly, we find the matrix Q^H such that

$$Q_k^H A_k = R_k$$

(2.48)

where $Q_k^H = Q_k^T$. The matrix is determined in factorized form either as the product of plane rotations using the Givens triangularization or as the product of elementary Hermitian matrices using the Householder triangularization.

The unitary matrix used in Givens' process differs from the identity matrix by a submatrix. The matrix is defined by Francis (3) as

$$t_{ii} = e^{i\alpha} \cos e \quad t_{ij} = -e^{i\beta} \sin e$$

$$t_{ji} = e^{i\gamma} \sin e \quad t_{jj} = e^{i\delta} \cos e$$

(2.49)

where $e, \alpha, \beta, \gamma, \delta$ are real and $\alpha - \beta - \gamma + \delta = e \pmod{2\pi}$.

Since this thesis is concerned with real matrices, we will develop the remainder of this process in terms of orthogonal instead of unitary transformations. For real matrices $\alpha = \beta = \gamma = \delta = 0$. Therefore, the orthogonal matrix T_{ij} is defined by Faddeev and Faddeeva (2) as
\[
T_{ij} = \begin{bmatrix}
1 & 1 & \cdots & -S \\
\vdots & \ddots & \ddots & \vdots \\
S & \cdots & 1 & \vdots \\
\vdots & \ddots & \ddots & 1 \\
\end{bmatrix}
\quad (i < j)
\]

Where \(C = \cos \theta\) and \(S = \sin \theta\). This plane rotation matrix \(T_{ij}\) corresponds to a rotation in the \((i, j)\) plane, and the angle \(\theta\) of the rotation is chosen so as to reduce the \((i, j)\) element of \(A_k\) to zero.

Equation (2.48) can be rewritten for real matrices.

\[
Q_k^T A_k = R_k
\]

The elements of \(A_k\) below the diagonal in the first column are eliminated one at a time with a \(T_{ij}\) matrix. This process is repeated on the first \((n-1)\) columns until matrix \(A_k\) is reduced to the right triangular matrix \(R_k\). \(Q_k^T\) is the product of these plane rotations. From Ralston (8)

\[
R_k = \prod_{i=1}^{n-1} \begin{bmatrix} n \\ j=1 \end{bmatrix} S_{ij} A_k = Q_k^T A_k
\]

The matrix \(R_k\) \(Q_k\) is then computed by successive post-multiplication of \(R_k\) with the transposes of the factors of \(Q_k^T\).

For a full matrix Given's method explained above requires considerably more work than Householder's method. The QR transformation is practical only when applied to a matrix of Hessenberg form. The reason is the same as that stated previously for the LR transformation. The almost triangular form of a matrix is preserved under the QR transformation because the matrices \(Q_k\) in the algorithm are also almost triangular.

The technique of shifts of origin with or without restoring may be introduced in the QR algorithm just as in the LR algorithm. For the
process with restoring, instead of A_k consider

$$A_k - p_k I = Q_k R_k$$

Continuing

$$A_{k+1} = R_k Q_k + p_k I = Q_k^T (A_k - p_k I) Q_k + p_k I =$$

$$Q_k^T A_k Q_k$$

Just as in (2.38)

$$A_{k+1} = Q_k^T A_k Q_k = (Q_1 Q_2 \cdots Q_k)^T (Q_1 Q_2 \cdots Q_k)$$

Francis (3) shows that (2.47) holds for the QR since

$$Q_1 Q_2 \cdots Q_{k-1} (Q_k R_k) R_{k-1} \cdots R_2 R_1$$

$$= Q_1 \cdots Q_{k-1} (A_1 - p_k I) R_{k-1} \cdots R_1$$

$$= (A_1 - p_k I) Q_1 \cdots Q_{k-1} R_{k-1} \cdots R_1$$

$$= (A_1 p_k I)(A_1 - p_{k-1} I) Q_1 \cdots Q_{k-2} R_{k-2} \cdots R_1$$

$$= (A_1 - p_k I)(A_1 - p_{k-1} I) \cdots (A_1 - p_1 I)$$

Hence, using p_k and S_k as previously defined, $p_k S_k$ gives the decomposition of $\prod_{i=1}^{k} (A_1 - p_i I)$. The shifts p_k are chosen as in the LR transformation.

The QR algorithm just defined is not very satisfactory when the real matrix being considered has complex eigenvalues. In this case the origin shifts will be complex at some stage, and the matrix A_{k+1} will be complex. Now, if any iteration with a complex shift p_k is followed by one using the conjugate shift, so that $p_{k+1} = \bar{p}_k$, then the matrix A_{k+2} will be real. Therefore, at the expense of doing two complex iterations instead of one when a matrix has a complex pair of eigenvalues, the resulting matrix is real and the convergence is still accelerated.
Francis (2), (3) develops an algorithm which produces a real matrix from which both complex and real eigenvalues can be calculated. This algorithm does not involve complex arithmetic in the intermediate steps. Consider the effect of performing two steps of the QR. From (2.45) it follows that

\[A_3 = Q_2^T A_2 Q_2 = Q_2^T Q_1^T A_1 Q_1 Q_2 \]

and

\[Q_1 Q_2 R_2 R_1 = Q_1 (A_2 - p_2 I) R_1 \]
\[= (A_1 - p_2 I) Q_1 R_1 \]
\[= (A_1 - p_2 I)(A_1 - p_1 I) \]

The matrix on the right of (2.58) is real. If \(Q_1 Q_2 = Q_o \) and \(R_2 R_1 = R_o \), then from (2.57) \(A_3 = Q_o^T A_1 Q_o \), and by uniqueness

\[Q_o R_o = (A_1 - p_1 I)(A_1 - p_2 I). \]

From (2.59) it follows that

\[Q_o^T (A_1 - p_1 I)(A_1 - p_2 I) = R_o. \]

and hence \(Q_o^T \) is the real orthogonal matrix that reduced \((A_1 - p_1 I) \) \((A_1 - p_2 I) \) to right triangular form.

An explanation of a property of Hessenberg matrices is necessary and is given by Parlett (7). If a matrix \(M \) is unitarily similar to an upper Hessenberg matrix \(H \) with real, non-negative, subdiagonal elements, then the first column of the transformation matrix \(U \) uniquely determines the remaining columns of \(U \) and all of \(H \). To make this clear, consider

\[UH = MU \]

and develop recursive formulas for calculating the \(U_i \) and \(h_{ij} \) from \(U_1 \) and \(M \). At the \(j \)th stage, we take \(H_1, \ldots, H_{j-1} \) and \(U_1, \ldots, U_j \) as known where \(j = 1, 2, \ldots, n \) and subscripts on matrices denoting columns.
Equate the j^{th} column of each side of (2.61) and obtain the formulas for H_j and U_{j+1}. Since U_1 is orthogonal to the other columns of U_j,

$$h_{ij} = U_i^T M U_j$$

for $i = 1, 2, \ldots, j$ (2.62)

Take all known quantities of (2.62) to the right side of $U H_j = M U_j$. Then

$$h_{j+1,j} U_{j+1} = M U_j - \sum_{i=1}^{j} h_{ij} U_i - V_{j+1}.$$

(2.63)

Since U_{j+1} must be of unit length, it follows that

$$h_{j+1,j} = \| V_{j+1} \|,$$

$$U_{j+1} = \frac{1}{h_{j+1,j}} V_{j+1}.$$

(2.64)

Although this procedure ends when the first $h_{j+1,j} = 0$, Francis (3) chooses U_1 so that it determines the entire transformation.

Using this property, Francis (2), (3) developed the double QR algorithm which must be applied to a Hessenberg matrix. The orthogonal transformation of A_1 into A_3 using Q_0 from equation (2.59) is uniquely determined by the first column of Q_0. R_0 is right triangular, and, therefore, column 1 of Q_0 is column 1 of $Q_0 R_0$ normalized to unit length. Only the first column of $Q_0 R_0$ is needed to compute A_3. This column consists of at most three elements which are given by

$$X_1 = (a_{11} - p_1)(a_{11} - p_2) + a_{12} a_{21} = a_{11}^2 + a_{12} a_{21} - a_{11}$$

$$a_{21} (p_1 + p_2) + p_1 p_2$$

(2.65)

$$Y_1 = a_{21} (a_{11} - p_2) + (a_{22} + p_1) a_{21} = a_{21} (a_{11} + a_{22} - p_1 - p_2)$$

$$Z_1 = a_{32} a_{21}$$

To start the iteration, apply to A_1 an orthogonal matrix, say P_1 which has as its first column the elements of (2.65). This destroys the Hessenberg form by changing the first three rows and columns of A_k. Thus,
where the elements changed by the row and column operations are underlined and primed, respectively. Next, the matrix $P_1^T A P_1$ is restored to upper Hessenberg form with non-negative subdiagonal elements using any orthogonal procedure. This reduction is accomplished by applying to $P_1^T A P_1$, transformations P_2', \ldots, P_{n-2} such that

$$P_{n-2}^T \ldots P_1^T A_1 P_1 \ldots P_{n-2} = A_3.$$ \hspace{1cm} (2.67)

It is necessary that the first column of $P_1 P_2 \ldots P_{n-2}$ be the first column of P_1.

A typical stage in the iteration is illustrated by
where the elements of the three rows and columns changed by the iteration are indicated as in (2.66). The elements a and h are those of the initial and final matrices A_k and A_{k+2} respectively. The matrix A_{k+2} has upper Hessenberg form.

For the double QR algorithm, Householder's method is more economical than Given's. Householder's procedure, using floating-point arithmetic, was previously explained for the reduction of a matrix to Hessenberg form. It is used in fixed-point arithmetic for the double QR algorithm. The equations for this version are given by Wilkinson (13) to be

\[
P = I - 2 \, \mathbf{p}_r \, \mathbf{p}_r^T / \| \mathbf{p}_r \|_2^2
\]

\[
\mathbf{p}_r^T = (0, \ldots, 0, 1, u_r, v_r, 0, \ldots, 0)
\]

\[
S_r^2 = X_r^2 + Y_r^2 + Z_r^2, \quad u_r = \frac{v_r}{(X_r + S_r)}, \quad v_r = \frac{Z_r}{(X_r + S_r)}
\]

\[
2 / \| \mathbf{p}_r \|_2^2 = 2 / (1 + u_r^2 + v_r^2).
\]

The elements $a_{r-1, r-1}$, $a_{r+1, r-1}$, and $a_{r+2, r-1}$ are denoted by X_r, Y_r, Z_r.

With this choice of P, orthogonal similarity transformations are performed on the matrix in (2.66) to return it to upper Hessenberg form. This double iteration technique is much preferred to the original QR algorithm with a complex matrix in the intermediate step.
III. DISCUSSION AND COMPARISON OF ALGORITHMS

Several difficulties are encountered when attempting to find eigenvalues by the orthodox LR algorithm. They are summed up in the following:

1. The $2/3 n^3$ multiplications required for one iteration on a full matrix is prohibitive.

2. As illustrated in (2.13) and (2.14), matrices exist for which triangular decomposition fails or is not unique.

3. A more frequent problem occurs when the triangular decomposition exists but is numerically unstable.

4. The convergence of the subdiagonal elements to zero is often very slow if no origin shifts are used.

If any matrix is even close to a matrix which does not have a triangular decomposition, although the LR algorithm does not actually break down, it becomes numerically unstable. This occurs when some of the divisors in the triangular decomposition are small, causing the error to be magnified. When the divisors are zero, the decomposition breaks down. This complete breakdown is rare, but numerical instability of the orthodox LR algorithm is quite common. For this method to be useful, it must be stable with respect to the buildup of round off error. So the modified LR algorithm, which has less satisfactory convergence properties, must be used. The work involved in each iteration of the modified LR algorithm on a matrix of Hassenberg form is proportional to n^2 which is the same as for one iteration of the orthodox LR algorithm.
To evaluate the LR and QR methods for computing the eigenvalues of a real non-symmetric matrix, programs were written in Fortran II and run on the IBM 1620 Model II.

Two programs were written for the modified LR transformation. The original matrix was reduced to upper Hessenberg form by Gaussian elimination in one and Householder's method in the other. Then origin shifts with restoring were used at every iteration to accelerate the convergence of the last diagonal element of the matrix \(A \). The shift was chosen to be the eigenvalue of the lower right \(2 \times 2 \) principal submatrix, which is closest to \(a_{nn}^{(k)} \) as was described by Wilkinson (13). If these eigenvalues were real and equal to \(s_k \) and \(t_k \), the shift \(p_k \) was set equal to \(s_k \) or \(t_k \), depending on the quantities \(|s_k - a_{nn}^{(k)}| \) and \(|t_k - a_{nn}^{(k)}| \). If \(p_k \) is a good approximation to \(\lambda_n \) the element \(a_{n,n-1}^{(k)} \) decreases rapidly, and, therefore, it is advantageous to iterate on \((\lambda_k - p_k)I \). When the \(a_{n,n-1} \) element is zero to working accuracy, the element \(a_{nn} \) will be a good approximation to \(\lambda_n \). The matrix is then deflated by omitting row and column \(n \), and the LR transformation may be applied to the reduced matrix. In this way, the eigenvalues of the matrix \(A \) were found one by one as the order of the matrix is reduced at each step.

Another necessary step is checking the subdiagonal elements. These elements are tending to zero, but, if a matrix \(A_k \) has a subdiagonal element \(a_{i+1,i} \), which is small enough, the element is set equal to zero, and the matrix is partitioned. Then continue iterating on the submatrix of order \((n-1) \) in the bottom right hand corner.

This technique is combined with one originated by Francis (3) which also involves subdiagonal elements. When a matrix \(A_k \) is found to have
small elements $a_{i+1,i}^{(k)}$ and $a_{i+2,i+1}^{(k)}$, the matrix is partitioned. This condition is determined by using the equation

$$a_{i+1,i}^{(k)} a_{i+2,i+1}^{(k)} / (a_{i+1,i+1}^{(k)} - p_k) < \delta$$

for $i = 1, 2, \ldots, n-1$, (3.1)

where δ is some criteria for convergence and $(a_{i+1,i+1}^{(k)} - p_k)$ is the current value of $a_{i+1,i+1}^{(k)}$ after origin shifting. If the largest value for which this is true is set equal to some s, then the modified LR transformation is performed on matrix $(A_k - p_k I)$ starting with row $(s+1)$. The similarity transformation is completed starting with column $(s+1)$. A substantial amount of computation is saved by partitioning matrix A_k in the two ways described above. Wilkinson (13) points out that the reduction to Hessenberg form is unique only if all the subdiagonal elements are non-zero. This is another reason for the importance of iterating only on the lower submatrix when a subdiagonal element is less than some δ.

Another way to avoid instability is to make use of elementary orthogonal transformation. Two programs were written for the double QR algorithm. The original matrix was reduced to upper Hessenberg form by Gaussian elimination and Householder's method just as for the modified LR. The double QR algorithm was developed especially for the case of a real matrix which has complex eigenvalues. Before each iteration the roots of the 2×2 principal submatrix of (2.43) are found, and the subdiagonal elements $a_{n,n-1}^{(k)}$ and $a_{n-1,n-2}^{(k)}$ are inspected. If either or both of these are effectively zero, the appropriate eigenvalue or eigenvalues are detected, and the matrix is reduced by one or two. If these subdiagonal elements are non-zero, iteration is performed using the double QR algorithm. This shift was incorporated at every stage.
The roots mentioned in the preceding paragraph are the origin shifts \(p_k \) and \(p_{k+1} \). If these roots are complex conjugates, the sum and product of \(p_k \) and \(p_{k+1} \) are used instead of using the origin shifts directly. Thus, any complex arithmetic is avoided. The complex eigenvalues of \(A \) will be the roots of the lower right principal submatrix at some stage when \(a_{n-1,n-2} \) is effectively zero.

This transformation leads to \(A_{(k+2)} \) only when it is unique. So, if some \(a_{i+1,i} = 0 \), it is necessary to ensure uniqueness by partitioning the matrix and iterating on only a principal submatrix. The subdiagonal elements are scanned before each iteration as was done for the modified LR algorithm, and the smallest \(q \) is found such that for \(q < i < n \) all \(a_{i+1,i} = 0 \).

The transformation is also in danger of being ill-determined because of the smallness of the subdiagonal elements. Thus, we again incorporate a device used in the modified LR which saves a significant number of calculations. When the elements \(a_{i+1,i} \) and \(a_{i+2,i+1} \) are small enough to be treated as zero, the iteration is started at \(a_{ii} \) rather than \(a_{jj} \). A satisfactory criterion for this is the size of

\[
|a_{i+1,i} a_{i+2,i+1} - (a_{i+1,i+1} + a_{i+2,i+2} - (p_k + p_{k+1})) + \\
|a_{i+3,i+2}| / (a_{i+1,i+1} (a_{i+1,i+1} - (p_k + p_{k+1})) + \\
a_{i+1,i+2} a_{i+2,i+2} + p_k p_{k+1})|
\]

(3.2)

The computer was programmed to find the largest values for which (3.2) is less than some \(\delta \). It may be noted that \(s \leq i \leq n-3 \) and \(1 \leq q \leq s < n \). Using this system, an iteration is started at the \(s^{th} \) row and column of the matrix, and each column operation is started at the \(q^{th} \) element of each column. If \(s > q \), it is necessary to change the sign of the element \(a_{1,1}^{(k)} \).
On the first step of an iteration an orthogonal transformation was performed on A_1 using the matrix P_1 whose first column consists of the elements X_1, Y_1, Z_1 given in (2.65). In following steps that reduce the matrix to Hessenberg form, the elements $a_{r,r-1}^{(k-1)}, a_{r+1,r-1}^{(k-1)},$ and $a_{r+1,r-1}^{(k-1)}$, which are used to determine u_r and v_r of (2.68), are denoted by X_r, Y_r, Z_r.

The preliminary transformation of A_1, $P_1^T A_1 P_1$ can be made exactly analogous to the operations used to reduce the matrix if we augment the matrix A_1 on the left with the elements X_1, Y_1, Z_1. There are $4n^2$ multiplications required by each iteration of the QR algorithm as compared to $5n^2$ involved in passing from A_k to $A_{(k+2)}$ using the double QR algorithm just discussed.

Several different shift strategies involving the element $a_{nn}^{(k)}$ were incorporated in the modified LR programs for experimentation which included the following suggested by Wilkinson (13):

1. Use the shift $a_{nn}^{(k)}$ at every stage.

2. Use the shift only when $|1-a_{nn}^{(k)} / a_{nn}^{(k-1)}|$ is less than some tolerance.

3. Use the shift only when $|a_{nn,n-1}^{(k)}| / \|A_1\|_\infty$ where ϵ is some tolerance.

These procedures accelerated the convergence of the eigenvalues; but, if at some stage the element a_{nn} becomes zero, the shift has no effect. However, these shifts of origin determined by $a_{nn}^{(k)}$ are of limited value since they can obviously only be used on a real matrix known to have real eigenvalues.
A technique suggested by Francis (3) for the double QR algorithm uses the roots of the matrix in (2.43). These are denoted by λ_k and λ_{k+1} ordered to differ least from $a_{n-1,n-1}$ and a_{nn}, respectively. We retain the two previous roots $\lambda_{(k-2)}$ and $\lambda_{(k-1)}$ and calculate $|\frac{\lambda_k - \lambda_{k+2}}{\lambda_k}|$ and $|\frac{\lambda_{k+1} - \lambda_{k-1}}{\lambda_{k+1}}|$. If these quantities are both greater than 1/2, origin shifts p_k and p_{k+1} are set, each equal to zero; if they are both less than 1/2, set $p_k = \lambda_k$ and $p_{k+1} = \lambda_{k+1}$. Otherwise both p_k and p_{k+1} are set equal to the real part of either λ_k or λ_{k+1}, whichever corresponds to the quantity less than 1/2. This criterion of 1/2 is arbitrary.

A variation of this shifting technique was suggested by Wilkinson (13). For the modified LR algorithm, he uses $|p_k / p_{k-1} - 1| < 1/2$ as a criterion. This procedure, and the one explained in the preceding paragraph, uses a shift only after the shift shows an indication of convergence. This technique resulted in a high rate of convergence in those examples tested. However, there was no significant difference in the results when the shift was used at every stage. So, for calculating the results shown in the tables in Appendix B, it was decided to use the shift at every iteration. Shifting is a technique for keeping the number of iterations at a minimum and is desirable not only from the standpoint of a decrease in computation time, but also from the standpoint of increased accuracy.

All the calculations were performed using double precision arithmetic, retaining 16 significant digits. The necessity of this high precision is questionable when performing the iterations using the double QR or modified LR transformations. However, it is important in the preliminary reduction of the general matrix to upper Hessenberg form to prevent round off and ensure the similarity of the condensed matrix to the original
matrix. The criterion for convergence was varied using $\epsilon = 10^{-4}$, $\epsilon = 10^{-6}$ and $\epsilon = 10^{-8}$.

One difficulty that was encountered is the sensitivity of eigenvalues. A problem is said to be ill-conditioned if small changes in the parameters make comparatively large changes in the solutions. In this case, the parameters are the elements of the matrix. It is meaningless to state that a matrix A is ill-conditioned. It may be ill-conditioned with respect to the calculation of the inverse or the calculation of eigenvalues or eigenvectors, but ill-conditioning with respect to one does not necessarily imply ill-conditioning with respect to another. Since only the eigenvalues are being discussed in this thesis, the sole concern is with the sensitivity of the eigenvalues to changes in the parameters which determine the condition of a problem. Due to the sensitivity of some eigenvalues, it is useless to seek a single computer method which is accurate in all cases.

It was mentioned in the preceding chapter that after the matrix has become triangular when using the orthodox LR algorithm, the eigenvalues appear on the diagonal in decreasing order of magnitude from left to right. This condition is considered desirable but not necessary. Application of the modified LR algorithm to a matrix frequently causes the eigenvalues to become disordered along the diagonal. This is nearly always the case when the disappearance or smallness of subdiagonal elements necessitates partitioning the matrix. Applying these strategems to the double QR algorithm also makes it less likely that the eigenvalues will be found in order of decreasing magnitude.
Another case that must be considered is that of a matrix having some eigenvalues of equal modulus. Multiple eigenvalues corresponding to linear divisors do not affect the speed of convergence or accuracy of eigenvalues in either the modified LR or double QR transformations. When the eigenvalues of equal modulus are not equal, these two algorithms also converge, but the eigenvalues seem to be somewhat less accurate for some matrices. When eigenvalues of equal modulus correspond to a matrix with non-linear divisors, the LR algorithm does not, in general, give convergence to upper triangular form. Nevertheless, when the double QR transformation is applied, the eigenvalues converge at approximately the same rate for small matrices and somewhat slower for large matrices.

Another important case is that of a real matrix with some real eigenvalues and some complex conjugate eigenvalues. The matrix A_k tends to an upper triangular matrix except for a single subdiagonal element associated with each complex conjugate pair of eigenvalues. Each of these subdiagonal elements is associated with a 2×2 matrix centered on the diagonal whose eigenvalues converge to a complex conjugate pair. This condition poses no problem for the double QR algorithm in which the $a_{n-1,n-2}$ element is checked before each iteration. Eventually this 2×2 matrix appears as a lower right principal submatrix, and the complex conjugate eigenvalues are determined. The modified LR algorithm does not converge for complex conjugate eigenvalues. Parlett (7) states that he is working on a variation of Wilkinson's modified LR algorithm for use on real matrices with complex eigenvalues. For the orthodox LR and QR transformations such 2×2 blocks will occur on the diagonal, but are difficult to detect by an automatic procedure.
IV. RESULTS AND CONCLUSIONS

The results of this study indicate that the QR algorithm is a more successful method than the LR algorithm for finding the eigenvalues of real unsymmetric matrices. Several observations have been made from the results of experimentation with numerous test matrices.

The convergence properties of the modified LR algorithm, when applied to real matrices, are not satisfactory except when the eigenvalues of the matrix are all real. Another restriction is that for convergence to take place any matrix with equal eigenvalues must have linear divisors. Also, a few matrices which are originally well-conditioned with respect to their eigenvalues were found to become progressively more ill-conditioned at each iteration. It does not seem to be uncommon for the size of the off-diagonal elements to steadily increase resulting in a matrix A_k which is no longer similar to the original matrix A_1. When this occurred, sometimes the process either failed to converge after 25 iterations or failed to converge on all the correct eigenvalues. An example of a matrix, which converged on one eigenvalue correctly then failed to converge on the others, is cited in Table 6 of Appendix B. This growth of the off-diagonal elements does not necessarily affect the convergence to the eigenvalues.

When comparing the use of Gaussian elimination and Householder's method for the preliminary reduction of the matrix to upper Hessenberg form, it was noticed that when Gaussian elimination was used with the modified LR algorithm 18.7% of the matrices tested required one or two more iterations than for Householder's method. For the double QR algorithm, one more iteration was necessary in 20% of the matrices tested for convergence of
the first eigenvalue when using Householder's reduction rather than Gaussian elimination. But in many of these cases, the total number of iterations required for convergence of all the eigenvalues were found to be the same. There may be some significance in the fact that fewer iterations were necessary when the same type of similarity transformation was used for both the preliminary reduction and the iteration.

The selection of a method for reducing the original matrix generally does not appear to make any significant difference in the accuracy of the eigenvalues found. However, for the matrices in Tables 5 and 9 or Appendix B, the use of Gaussian elimination with the modified LR algorithm caused a loss of accuracy in some of the computed eigenvalues. No such difficulty was encountered with the double QR algorithm.

The use of $\epsilon = 10^{-6}$ as a criterion for convergence seemed to give the best results. When $\epsilon = 10^{-8}$ was used with the modified LR algorithm, the results were often more accurate, but in some cases it disturbed the accuracy of the convergence of the double QR algorithm.

A comparison was made of the time required for convergence of the algorithms to all the eigenvalues of a matrix, and it was observed that the use of Householder's method with either algorithm required more time than Gaussian elimination with the same algorithm. Since the same number of iterations are usually required when using either method of reduction with an algorithm, this time difference is expected, because Householder's method requires $5/3n^3$ multiplications as compared to $5/6n^3$ for Gaussian elimination.
The total number of iterations in the convergence to the eigenvalues must be taken into consideration when comparing the times required by the modified LR and double QR algorithms. As the dimension of the test matrices used was increased, the number of iterations required for convergence by the modified LR increased at a faster rate than for the double QR. When the total number of iterations is the same for both algorithms, the double QR requires more time. This is again due to the number of multiplications involved in one iteration.

The modified LR transformation is much easier to apply, but because of its possible numerical instability and other restrictions, its value seems limited. Therefore, the double QR algorithm was found to be the more successful method for dealing with the real unsymmetric eigenvalue problem.
APPENDIX A

*FANDK1605
C MODIFIED LR
C USING SHIFTS (DETERMINED BY LOWER SUBMATRIX) AND DEFLATION
C USE FOR REAL NONSYMMETRIC MATRICES WITH REAL EIGENVALUES
DIMENSION A(20,20),SP(20),F(20,20),FN(20),KRW(20)
5 READ 200, N
READ 300,((A(I,J),J=1,N),I=1,N)
SW1=0.0
IT=0
EPSLN=10,E-6
C HOUSEHOLDER-REDUCTION OF NON-SYMMETRIC MATRICES TO UPPER-
C HESSENBERG FORM
C USING P=I-UUT/2K**2
L=N-1
DO 395 I=2,L
SMS=0.0
DO 350 K=I,N
350 SMS=SMS+A(K,I-1)**2
S=SQRTF(SMS)
IF(A(I,I-1)) 352,353,353
352 SGN=-1.
GO TO 354
353 SGN=1.
354 X=A(I,I-1)+S*SGN
A(I,I-1)=X
BKSQ=SGN*S*X
MP=I+1
DO 355 K=I,N
355 SP(K)=A(K,I-1)/BKSQ
SP(I-1)=-SGN*S
MR=I-1
DO 370 Ik=I,N
370 P=0.0
DO 360 J=I,N
360 P=P+A(J,I-1)*A(J,IK)
DO 365 JI=1,N
365 F(JI,IK)=A(JI,IK)-SP(JI)*P
DO 366 J=1,MR
366 F(J,IK)=A(J,IK)
370 CONTINUE
DO 390 Ki=1,N
Q=0.0
DO 375 K=I,N
375 Q=Q+F(KI,K)*A(K,I-1)
DO 380 K=I,N
380 A(KI,K)=F(KI,K)-Q*SP(K)
390 CONTINUE
DO 391 J=MP,N
391 A(J,MR)=0.0
A(I,MR)=SP(MR)
395 CONTINUE
DO 393 JK=1,N
393 PRINT 400, (A(JK,J),J=1,N)
C CHOOSE ORIGIN SHIFTS
181 IF(ABSF(A(N,N-1))-EPSLN) 182,100,100
182 PRINT 400,A(N,N)
 N=N-1
 IT=0
 IF(N-2)190,185,181
185 SW1=1.0
 GO TO 100
190 PRINT 400,A(N,N)
 GO TO 195
100 B=A(N,N)-A(N-1,N-1)
 C=A(N-1,N-1)*A(N,N)-A(N,N-1)*A(N-1,N)
 D=B**2-4.*C
 E=SQRTF(ABSF(D))/2.
 G=-B/2.
 IF(D)105,110,110
105 SH=G
 GO TO 125
110 P=G+E
 Q=G-E
 IF(SW1) 114,114,112
112 PRINT 400,P
 PRINT 400,Q
 GO TO 195
114 IF(ABSF(P-A(N,N))-ABSF(Q-A(N,N))) 115,120,120
115 SH=P
 GO TO 125
120 SH=Q
125 DO 130 I=1,N
130 A(I,I)=A(I,I)-SH
C CHECK SUBDIAGONAL ELEMENTS FOR DECOMPOSITION OF MATRIX
 NP=N-2
 KP=NP
 MN=N-1
 DO 132 MP=1,NP
 I=MN-MP
 IF(ABSF(A(I+1,I))-10.E-8) 134,134,131
131 IF(ABSF((A(I+1,I)*A(I+2,I+1))/A(I+1,I+1))-10.E-8) 134,134,132
132 KP=I
134 CONTINUE
C ITERATE MODIFIED LR
 ML=N-1
 DO 152 KR=KP,ML
 KRW(KR)=KR
 MP=KR+1
135 KRW(KR)=KR+1
 DO 140 J=KR,N
 SV=A(KR+1,J)
 A(KR+1,J)=A(KR,J)
140 A(KR,J)=SV
DO 150 J=K,R,N
152 CONTINUE
 DO 175 KR=K,P,ML
155 DO 160 J=1,N
 SV=A(J,KR+1)
 A(J,KR+1)=A(J,KR)
160 A(J,KR)=SV
165 DO 170 J=1,N
175 CONTINUE
 IT=IT+1
 PRINT 500,IT
 DO 180 I=1,N
 A(I,I)=A(I,I)+SH
180 PRINT 400, (A(I,J),J=1,N)
 IF(IT-25)181,181,194
194 PRINT 600
195 GO TO 5
196 CALL EXIT
200 FORMAT (15)
600 FORMAT (5X,22HPROCESS NOT CONVERGING)
300 FORMAT (7E10.2)
400 FORMAT (1X,6F18.8,/,4X,6F18.8)
500 FORMAT(/5X,I3,10HITERATIONS,/)END
APPENDIX A (Cont'd)

*FANDK1605
C DOUBLE QR
DIMENSION A(20,20),GAMA(3),RHO(3),FN(20)
5 READ 800,N
READ 300,((A(I,J),J=1,N),I=1,N)
IZ=0
EPSLN=10.E-6
C GAUSSIAN ELIMINATION - UPPER HESSENBERG
ML=N-2
DO 345 KR=1,ML
CK=ABSF(A(KR+1,KR))
KOW=KR+1
MP=KR+2
DO 315 I=MP,N
IF(ABSF(A(I,KR))-CK) 315,310,310
310 CK=ABSF(A(I,KR))
KOW=I
315 CONTINUE
DO 320 J=KR,N
SV=A(KR+1,J)
A(KR+1,J)=A(KOW,J)
320 A(KOW,J)=SV
DO 325 I=MP,N
325 FN(I)=A(I,KR)/A(KR+1,KR)
DO 330 J=KR,N
US=A(KR+1,J)
DO 330 I=MP,N
330 A(I,J)=A(I,J)-FN(I)*US
335 A(I,KOW)=SV
DO 340 J=MP,N
DO 340 I=1,N
340 A(I,KR+1)=A(I,KR+1)+FN(J)*A(I,J)
345 CONTINUE
DO 350 I=1,N
350 PRINT 700, (A(I,J),J=1,N)
C CHOOSE ORIGIN SHIFTS
SW1=0.0
SW2=0.0
SWC=0.0
10 IF(ABSF(A(N-1,N-2))-EPSLN) 25,15,15
15 IF(ABSF(A(N,N-1))-EPSLN) 20,75,75
20 PRINT 400, A(N,N)
N=N-1
GO TO 40
25 IF(ABSF(A(N,N-1))-EPSLN) 35,30,30
30 SWZ=1.0
GO TO 75
35 PRINT 400, A(N,N)
C FIND EIGENVALUES OF LOWER SUBMATRIX

75 \(B = -\lambda_{N,N} - \lambda_{N-1,N-1} \)
76 \(C = (N-1,N-1)\lambda_{N,N} - (N,N)\lambda_{N-1,N-1} \)
77 \(D = B^2 - 4 \times C \)
78 \(E = \sqrt{D} \)
79 \(G = -B/2 \)
80 IF(D) 80, 85, 85
81 \(RTPD = G^2 + E^2 \)
82 \(SHC = 1.0 \)
83 GO TO 90
84 \(RTPD = G^2 - E^2 \)
85 \(RTSM = 2 \times C \)
86 IF(SW1) 95, 95, 100
87 \(IF(SW2) 128, 128, 100 \)
88 \(SW2 = 0.0 \)
89 N = N - 2
90 IF(SW1) 110, 110, 120
91 \(RT1 = G + E \)
92 \(RT2 = G - E \)
93 PRINT 400, RT1
94 PRINT 400, RT2
95 IF(SW1) 40, 40, 125
96 \(IF(SW1) 115 \)
97 \(IF(SW2) 128, 128, 100 \)
98 \(SW1 = 0.0 \)
99 GO TO 275
100 \(SWC = 0.0 \)
101 PRINT 500, C, E
102 PRINT 600, C, E
103 IF(SW1) 40, 40, 125
104 \(SW1 = 0.0 \)
105 GO TO 275
106 \(MP = N - 3 \)
107 \(MN = N - 2 \)
108 \(KP = NP \)
109 \(IF(N-3) 127, 127, 129 \)
C CHECK SUBDIAGONAL ELEMENTS FOR DECOMPOSITION

112 \(KF = 1 \)
113 \(KQ = 1 \)
114 GO TO 155
115 \(DO 140 MP = 1, NP \)
116 \(I = MN - MP \)
117 IF(ABS(A(I+1,1)) - 10.0E-8) 145, 145, 130
118 \(IF(ABS(A(I+1,1)) \times A(I+2,I+1) \times ABSF(A(I+1,I+1) + A(I+2,I+2) - RTSM) + ABSF \)

\[2(A(I+3,I+2))/(A(I+1,I+1)\times(A(I+1,I+1)-RTSM)+A(I+1,I+2)\times A(I+2,I+1)+3RTPD))=10.E-8 \]

140 KP=I
145 CONTINUE
 NM=KP+1
 KQ=KP
 DO 150 MP=1,KP
 I=NM-MP
 IF (ABSF(A(I+1,1))-10.E-8)155,155,150
 KQ=1
 CONTINUE
 NL=N-1
 PRINT 850,KP,KQ
 C ITERATE DOUBLE QR
 DO 265 I(KP,NL
 IF (I-KP)165,160,165
 GAMA(1)=A(KP,KP)\times(A(KP,KP)-RTSM)+A(KP,KP+1)\times A(KP+1,KP)+RTPD
 GAMA(2)=A(KP+1,KP)\times(A(KP,KP)+A(KP+1,KP+1)-RTSM)
 GAMA(3)=A(KP+1,KP)\times A(KP+2,KP+1)
 A(KP+2,KP)=0.0
 GO TO 180
 165 GAMA(1)=A(I,I-1)
 GAMA(2)=A(I+1,I-1)
 GAMA(3)=A(I+2,I-1)
 GO TO 180
 170 GAMA(3)=0.0
 180 FK=SQRTF(GAMA(1)**2+GAMA(2)**2+GAMA(3)**2)
 IF (FK)185,190,190
 FK=-FK
 190 IF (FK)200,195,200
 195 RHO(1)=0.0
 RHO(2)=0.0
 ALPHA=2.
 GO TO 205
 200 RHO(1)=GAMA(2)/(GAMA(1)+FK)
 RHO(2)=GAMA(3)/(GAMA(1)+FK)
 ALPHA=2./(1.+RHO(1)**2+RHO(2)**2)
 205 IF (I-KQ)210,225,210
 210 IF (I-KP)215,220,215
 215 A(I,I-1)=-FK
 GO TO 225
 220 A(I,I-1)=-A(I,I-1)
 225 DO 240 J=I,N
 ZN=ALPHA*(A(I,J)+RHO(1)\times A(I+1,J))
 LP=N
 IF (I-(N-2))230,230,235
 ZN=ZN+ALPHA*(RHO(2)\times A(I+2,J))
 A(I+2,J)=A(I+2,J)-RHO(2)\times ZN
 LP=I+2
 235 A(I,J)=A(I,J)-ZN
 240 A(I+1,J)=A(I+1,J)-RHO(1)\times ZN
 243 DO 255 J=KQ,LP
ZN = ALPHA*(A(J,I)+RHO(1)*A(J,I+1))

IF (I-(N-2)) 245, 245, 250
245 ZN = ZN + ALPHA*(RHO(2)*A(J,I+2))
A(J,I+2) = A(J,I+2) - RHO(2)*ZN
250 A(J,I) = A(J,I) - ZN
255 A(J,I+1) = A(J,I+1) - RHO(1)*ZN
IF (I-(N-3)) 260, 260, 265
260 ZN = ZN + ALPHA*RHO(2)*A(I+3,I+2)
A(I+3,I) = -ZN
A(I+3,I+1) = -RHO(1)*ZN
A(I+3,I+2) = A(I+3,I+2) - RHO(2)*ZN
265 CONTINUE

DO 270 IJ = 1,N
270 PRINT 700, (A(IJ,J), J = 1,N)
GO TO 10
275 CONTINUE
IZ = IZ + 1
IF (IZ = 10) 5, 5, 280
280 CALL EXIT
300 FORMAT (7E10.2)
400 FORMAT (5X,F18.8)
500 FORMAT (5X,F12.8,2H-I,F12.8)
600 FORMAT (5X,F12.8,2H+I,F12.8)
800 FORMAT (15)
750 FORMAT (5F18.8)
700 FORMAT (1X,6F18.8,/,4X,6F18.8)
850 FORMAT (5X,2HE=-,F14.4,5X,2HQ=-,F14.4,/)
APPENDIX B

Numerical Results

Given below are some of the results obtained using the programs listed in Appendix A. The column headed 0 indicates the order in which the eigenvalues were found. The column headed I indicates the number of iterations required. The G and H indicate Gaussian elimination and Householder's method respectively were used for the preliminary reduction of the matrix. TIME does not include compile time.

TABLE I

<table>
<thead>
<tr>
<th>CORRECT</th>
<th>COMPUTED, $\epsilon = 10^{-6}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LR-H 0 I</td>
</tr>
<tr>
<td>.905</td>
<td>.90501276 3 0</td>
</tr>
<tr>
<td>.900</td>
<td>.89998723 1 2</td>
</tr>
<tr>
<td>.100</td>
<td>.09999999 2 0</td>
</tr>
<tr>
<td>TIME</td>
<td>7"</td>
</tr>
</tbody>
</table>

TABLE II

<table>
<thead>
<tr>
<th>CORRECT</th>
<th>COMPUTED, $\epsilon = 10^{-6}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LR-H 0 I</td>
</tr>
<tr>
<td></td>
<td>1.00000169 1 4</td>
</tr>
<tr>
<td></td>
<td>2.00056091 3 0</td>
</tr>
<tr>
<td></td>
<td>1.99943739 2 0</td>
</tr>
<tr>
<td>TIME</td>
<td>10"</td>
</tr>
</tbody>
</table>

* Imaginary parts $\pm .000000XX$
 Reduces to $\pm .000000XX$ when $\epsilon = 10^{-7}$
TABLE III

<table>
<thead>
<tr>
<th>CORRECT</th>
<th>LR-H 0 I</th>
<th>LR-G 0 I</th>
<th>QR-H 0 I</th>
<th>QR-G 0 I</th>
</tr>
</thead>
<tbody>
<tr>
<td>-17.86303</td>
<td>-17.86326 1 3</td>
<td>-17.86326 1 3</td>
<td>-17.86326 2 0</td>
<td>-17.86326 2 0</td>
</tr>
<tr>
<td>-17.15266</td>
<td>-17.15242 2 1</td>
<td>-17.15242 2 1</td>
<td>-17.15242 1 2</td>
<td>-17.15242 1 3</td>
</tr>
<tr>
<td>-7.57405</td>
<td>-7.57404 4 0</td>
<td>-7.57404 4 0</td>
<td>-7.57404 4 0</td>
<td>-7.57404 4 0</td>
</tr>
<tr>
<td>-5.29870</td>
<td>-5.29869 3 0</td>
<td>-5.29869 3 0</td>
<td>-5.29869 3 0</td>
<td>-5.29869 3 0</td>
</tr>
<tr>
<td>TIME</td>
<td>15"</td>
<td>14"</td>
<td>15"</td>
<td>18"</td>
</tr>
</tbody>
</table>

TABLE IV

<table>
<thead>
<tr>
<th>CORRECT</th>
<th>LR-H 0 I</th>
<th>LR-G 0 I</th>
<th>QR-H 0 I</th>
<th>QR-G 0 I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.022551</td>
<td>.116069</td>
<td>-.287028</td>
<td>-.429969</td>
<td></td>
</tr>
<tr>
<td>.228401</td>
<td>.742521</td>
<td>-.176368</td>
<td>-.283720</td>
<td></td>
</tr>
<tr>
<td>.326141</td>
<td>.097221</td>
<td>.197209</td>
<td>-.216487</td>
<td></td>
</tr>
<tr>
<td>.433864</td>
<td>.148965</td>
<td>-.193686</td>
<td>.006472</td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>15"</td>
<td>10"</td>
<td>13"</td>
<td>12"</td>
</tr>
</tbody>
</table>
TABLE V

<table>
<thead>
<tr>
<th>Correct</th>
<th>Computed, $\epsilon = 10^{-6}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LR-H 0 I</td>
</tr>
<tr>
<td>1.67828</td>
<td>1.678279 5 0</td>
</tr>
<tr>
<td>0.81321</td>
<td>0.813210 4 0</td>
</tr>
<tr>
<td>0.41985</td>
<td>0.419850 3 1</td>
</tr>
<tr>
<td>0.01521</td>
<td>0.015210 2 2</td>
</tr>
<tr>
<td>-0.29908</td>
<td>-0.299082 1 3</td>
</tr>
</tbody>
</table>

Time
- 23"
- 22"
- 29"
- 28"

TABLE VI

<table>
<thead>
<tr>
<th>Correct</th>
<th>Computed, $\epsilon = 10^{-6}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LR-H 0 I</td>
</tr>
<tr>
<td>-0.05811</td>
<td>-0.11695</td>
</tr>
<tr>
<td>-0.04291</td>
<td>0.56850</td>
</tr>
<tr>
<td>-0.01652</td>
<td>0.38953</td>
</tr>
<tr>
<td>0.06140</td>
<td>0.32179</td>
</tr>
</tbody>
</table>

Time
- 20"
- 17"
- 23"
- 23"
TABLE VII

<table>
<thead>
<tr>
<th>CORRECT</th>
<th>COMPUTED, $\epsilon = 10^{-6}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QR-H</td>
</tr>
<tr>
<td>15i</td>
<td>1.00000036 + 4.99999976i</td>
</tr>
<tr>
<td>1-5i</td>
<td>1.00000036 - 4.99999976i</td>
</tr>
<tr>
<td>1</td>
<td>0.99999927</td>
</tr>
</tbody>
</table>

| TIME | 15" | 15" |

TABLE VIII

<table>
<thead>
<tr>
<th>CORRECT</th>
<th>COMPUTED, $\epsilon = 10^{-6}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LR-H</td>
</tr>
<tr>
<td>332.849</td>
<td>332.849319</td>
</tr>
<tr>
<td>332.849</td>
<td>332.849319</td>
</tr>
<tr>
<td>15.618</td>
<td>15.6177676</td>
</tr>
<tr>
<td>15.618</td>
<td>15.6177676</td>
</tr>
<tr>
<td>2.533</td>
<td>2.532912</td>
</tr>
<tr>
<td>2.533</td>
<td>2.532912</td>
</tr>
</tbody>
</table>

| TIME | 3'5" | 42" | 33" | 30" |
Table IX

<table>
<thead>
<tr>
<th>46.</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Correct Computed, $\epsilon = 10^{-6}$

<table>
<thead>
<tr>
<th>8 digits</th>
<th>LR-H</th>
<th>LR-G</th>
<th>QR-H</th>
<th>QR-G</th>
</tr>
</thead>
<tbody>
<tr>
<td>63.409139</td>
<td>63.4091394</td>
<td>63.4091394</td>
<td>63.40913894</td>
<td>63.40913894</td>
</tr>
<tr>
<td>7.1201222</td>
<td>7.12012218</td>
<td>7.120120641</td>
<td>7.12012217</td>
<td>7.12012219</td>
</tr>
<tr>
<td>2.6180340</td>
<td>2.61803393</td>
<td>2.61804981</td>
<td>2.61803398</td>
<td>2.61803401</td>
</tr>
<tr>
<td>1.3790212</td>
<td>1.37902123</td>
<td>1.37919096</td>
<td>1.37902118</td>
<td>1.37902133</td>
</tr>
<tr>
<td>0.87074533</td>
<td>0.87074535</td>
<td>0.87057574</td>
<td>0.87074532</td>
<td>0.87074711</td>
</tr>
<tr>
<td>0.61529474</td>
<td>0.61529502</td>
<td>0.61496898</td>
<td>0.61529473</td>
<td>0.61529561</td>
</tr>
<tr>
<td>0.47045960</td>
<td>0.47046013</td>
<td>0.47603698</td>
<td>0.47043959</td>
<td>0.47045756</td>
</tr>
<tr>
<td>0.38196601</td>
<td>0.38196489</td>
<td>0.37669448</td>
<td>0.38196601</td>
<td>0.38196536</td>
</tr>
<tr>
<td>0.32555754</td>
<td>0.32555464</td>
<td>0.32561060</td>
<td>0.32555754</td>
<td>0.32555736</td>
</tr>
<tr>
<td>0.28918975</td>
<td>0.28941734</td>
<td>0.29114627</td>
<td>0.28918974</td>
<td>0.28918902</td>
</tr>
<tr>
<td>0.26648096</td>
<td>0.26648087</td>
<td>0.26648094</td>
<td>0.26658095</td>
<td>0.26658096</td>
</tr>
<tr>
<td>0.25398978</td>
<td>0.25376543</td>
<td>0.25198187</td>
<td>0.25398977</td>
<td>0.25399049</td>
</tr>
</tbody>
</table>

Time

| 3'13" | 3' | 4'8" | 3' |

VITA

The author was born on September 9, 1942, in Sault Ste. Marie, Michigan. She received her primary education in Manistique, Michigan, and attended high school there and in Rolla, Missouri. She attended college at Park College in Parkville, Missouri, and the University of Missouri at Rolla in Rolla, Missouri, receiving a Bachelor of Arts degree from Park College in December 1963. Since September 1964, she has been enrolled in the University of Missouri at Rolla as a graduate student in Computer Science.