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Abstract 

Continuous phase mass transfer coefficients are presented for 

internally circulating spheres of a Newtonian fluid traveling through a power­

law type continuous phase in the so-called creeping-flow region. The 

Nakano and Tien stream functions allow the Sherwood number to be deter­

mined as a function of the Peclet number, power-law index, and a viscosity 

ratio parameter. The Hirose and Moo-Young relation is shown to be a 

limiting case of this solution. Mass transfer rates increase as the fluids 

become more pseudoplastic and/or the continuous phase consistency index 

increases, all other factors held constant. 
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MASS TRANSFER FROM SPHERICAL GAS BUBBLES AND LIQUID 

DROPLETS MOVING THROUGH POWER-LAW FLUIDS 

IN THE LAMINAR FLOW REGIME 

Because of its importance in many chemical engineering processes, 

the problem of mass transfer from bubbles and droplets has been investi­

gated by numerous workers. In almost all previous theoretical and experi­

mental studies, the fluids under consideration have been Newtonian in 

character. In one recent study, a theoretical relation was developed which 

described the continuous phase mass transfer mechanism for a fully 

circulating gas bubble moving through a non-Newtonian liquid continuous 

phase which was described by the power-law rheological model (Hirose 

and Moo-Young, 1969). 

It is the purpose of this paper to present a solution for the 

continuous phase mass transfer coefficient for a wide range of dispersed 

and continuous phase properties. The primary investigation will be based 

upon the use of the Nakano and Tien (1968) continuous phase stream functions 

which were developed for a power-law type, non-Newtonian fluid in the 

continuous phase and a Newtonian fluid in the dispersed phase. The 

solution will be applicable for both a gas and liquid Newtonian dispersed 

phase and for a range of non -Newtonian continuous phase characteristics. 
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The results will also be compared with the continuous phase mass 

transfer coefficients obtained using the more restrictive non-Newtonian 

stream function of Hirose and Moo-Young (1969) for fully circulating gas 

bubbles rising in a power-law fluid, and also, with the approximate non-

Newtonian stream functions developed by Tomita (1959) for the case of no 

internal circulation within the dispersed phase and a power-law type, 

continuous phase fluid. In all cases the models will be compared with 

existing models based upon a Newtonian continuous phase. 

Mass Transfer Model 

The mathematical model for mass transfer from spheres in the 

creeping flow regime is described by the following dimensionless partial 

differential equation and boundary conditions using spherical coordinates 

with origin at the center of the sphere: 

v ac + va ac = .!_[a2c +~ ac) 
y oY y ae Pe oy2 y oY 

(1) 

with boundary conditions 

c = 0 at y=1 (2a) 

c = 1 at y -+ 00 (2b) 

ac = 0 
a a at 9=0,'7T (2c) 

The following assumptions have been made: 

(i) The flow is axially symmetric, isothermal, and steady state 

has been reached. 

(ii) The dispersed phase is a Newtonian fluid, while the continuous 

phase obeys a power-law model, i.e., 



i i 
T. =- IJ.~. 

J J 
for dispersed phase 

for continuous phase 

(iii) Natural convection, molecular diffusion in the angular direction 

and resistance to mass transfer inside the sphere are negligible. 

(iv) The solute is dilute. The solute diffusivity and density of both 

phases are constant. 

In order to complete the description of the forced-convective mass 

transfer model, the velocity components V e and V r have to be specified. 

The following continuous phase velocity components were derived in this 

work from the Nakano and Tien (1968) stream functions: 

A 
a-2 2 v = < -1 + 2A 1 y + 2 3 > cos e 

y y 

3 4 2 . 2 
+ (B1/y + B2/y )(2 cos B - sm 9) 

(3a) 

(3b) 

The coefficients A1, A2 , B1 , B2 , and the exponent 0' were tabulated for 

different values of flow behavior index nand a viscosity ratio parameter X. 

The parameter X is defined below in Equation 4. 

1-Ld a n-1 
X=-(-) 

K V 
co 

(4) 

These coemcients were so chosen that for the Newtonian case (n = 1), the 
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Nakano and Tien stream functions would become identical with the Hadamard 

(1911) stream functions for Newtonian continuous and dispersed phase fluids. 

Nakano and Tien (1968) in their study were concerned with the 

prediction of drag coefficients for a fluid sphere. Drag coefficients deter-

mined by Nakano and Tien agreed very well with the experimental results of 

Fararoui and Kintner (1961) for liquid droplets of a nitrobenzene and 

tetrachlorethane mixture falling through an aqueous solution of carboxy-

methyl cellulose. 

The velocity components based on the Hadamard stream functions 

were also used in this work as a check upon the mass transfer rates 

determined using the Nakano and Tien stream function when the continuous 

phase was Newtonian. They are as follows: 

[ 3R+2 1 1 R 1 J v = -1+(-)--~-)- cose 
y 2R+2 y 2 R+1 3 

y 
(5a) 

( 1 3R+2 1 1 R 1 ~ . v = 1- -(-)-- -<->- sme e 2 2R+2 y 4 R+1 3 
y 

(5b) 

In this case (n = 1), the viscosity ratio parameter of Nakano and Tien, X, 

becomes 

~d 
X=-=R 

~c 
(6) 

where 1-L and 1-L are the viscosity of the dispersed phase and the continuous 
d c 

phase, respectively. 

By use of Equations 3a and 3b, the boundary value problem of 

Equations 1 and 2 can be solved numerically for the solute concentration 

proffies in the continuous phase around the bubble or droplet. The average 
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Sherwood number is then calculated as follows: 

k 2a oC 
Sh = ...£___ = f' 11 (-) sinBde 

D Jo oy l 
y= 

(7) 

Continuous phase mass transfer coefficients were also calculated 

based upon velocity components derived from the works of Hirose and Moo-

Young (1969) and Tomita (1959). These velocity components are given later 

in this work [See Equations 14 and 16] along with a discussion of their 

conditions of applicability. 

Numerical Solution 

Because of its strong stability, the Crank-Nicolson implicit 

numerical method (1947) was used to solve the mass transfer models 

described above. To initiate the solution, boundary condition Equation 2c 

was first applied to obtain the solution for a= o. In this case, Equation 1 

becomes 

dC 2 d2C 2 dC v - =-(-+- -) 
y dy Pe dy2 y dy 

or written in the finite difference form using central difference 

approximations: 

a. 1 c · -1 1 + b. 1 c · 1 + d. 1 c · + 1 1 = 0 
1' 1 ' 1, 1, 1, 1 , 

where the second subscript, 1, represents the solution for 8 = 0, and 

2 v 2 
a - + ~ --i, 1 - Pe.AY 2 Pey 

(8) 

(9) 

(lOa) 

(lOb) 
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2 v 
di,1 =~~y-t 

2 
Pey 

(10c) 

Applying boundary condition Equations 2a and 2b, Equation 9 can be reduced 

to a system of linear, homogeneous, simultaneous equations having a tri-

angular coefficient matrix. Thus the solution is readily obtained for 9 = 0 by 

use of any well established numerical technique (e. g., the Gauss elimination 

method or the Gauss-Jordan method with pivotal condensation.) 

For 9 > 0, Equation 2 is written in the following finite difference 

form using central difference approximations: 

where 

f .. c. 1 . 1 +.e.. . c .. 1 + p .. c. 1 . 1 = q .. 1,J 1- ,J+ 1,J 1,J+ 1,J 1+ ,J+ 1,J 

v 
1 + y f .. = 

1, J Pe (/ly)2 4(Ay) 

v 
1 y 

p = -
i, j Pe(.6.y)2 4(.6.y) 

1 
PeY(~y) 

+ _..;;;1 __ 
Pey(,O.y) 

q .. =-f .. c. 1 .+t .. c .. -P .. c. 1 . 
1,J 1,) 1- ,J 1,J l,J 1,) 1+ ,J 

2 ve 
ti, j = Pe (Ay)2 - y(.6.9) 

Equations 11 and 12 represent an implicit numerical scheme 

(11) 

(12a) 

(12b) 

(12c) 

(12d) 

(12e) 

obtained by use of the Crank-Nicolson method. To solve the equations for 

any step in the angular direction, the solution for the previous step is 

needed. Therefore, with the !mown solution of Equation 8 or 9 fore = o, 
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the solution for any 8 > 0 can be obtained by solving Equation 11 and 12 

repeatedly with boundary condition Equations 2a and 2b. 

Results and Discussion 

The boundary value problem of Equation 1 and 2 for the forced-

convective mass transfer problem was solved numerically for various 

-3 5 
values of Peclet numbers ranging between 10 and 10 . The results are 

presented in terms of Sherwood numbers as a function of the Peclet number, 

the continuous phase flow behavior index n, and the viscosity ratio 

parameter X. The upper Pe limit, 105 , was the largest value of Pe 

possible for ordinarily encountered systems which still satisfy the creeping 

flow criterion Re < 1. 

This wide range of Peclet numbers creates a stability problem in 

the numerical solution of the partial differential equation if an attempt is 

made to use one specific value of the radial increment, f)y, for all values 

of the Peclet number. Therefore, it was found essential to use different 

values of Ay for different values of the Peclet number; it was found by 

trial that a smaller radial increment has to be used for a larger Peclet 

number in order to obtain the most stable concentration profiles. The 

Stokes stream function was used as a standard for this preliminary search 

for optimum values of /l.y at each Peclet number level. The values of Ay 

used in this work are presented in Table III.* 

*For tabular results (Table III), order NAPS Document XXXXX from ASIS 
National Pulbication Service, c/o CCM Information Sciences, Inc., 22 West 
34th Street, New York, New York 10001, remitting $1.00 for microfiche 
or $3. 00 for photocopies. 
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As expected for larger Peclet numbers, the concentration boundary 

layer is thinner. The outer limits of the boundary layer used in the present 

work are O. 5440 dimensionless radii for Pe = 104 and 0.1176 dimensionless 

radii for Pe = 105 from the sphere surface. For such high Peclet numbers, 

these are believed to be sufficiently far away from the sphere surface where 

the concentration is unity. 

For the angular direction, an increment of 3 degrees was used. A 

reduction of the angular increment by a factor of two resulted in a change of 

only about 0. 5% in the calculated value of Sh when Pe was equal to 104 • 

By choosing n equal to unity in the Nakano and Tien stream function 

(or directly using the Stokes and Hadamard stream functions), the Sherwood 

number relations obtained numerically by the present model will first by 

compared with previous studies of circulating droplets and bubbles moving 

through Newtonian fluids. This preliminary study will then be followed by 

the presentation of results for a non-Newtonian continuous phase. 

Newtonian continuous phase. For the non-circulating shperes, the 

above numerical technique when combined with the Stokes velocity components 

( 31 113] v = -1 +- (-) -- (-) cose 
y 2 y 2 y 

(13a) 

(13b) 

gave Sherwood numbers almost identical with those obtained by Friedlander 

(1957, 1961) using boundary layer theory and the Stokes (1880) stream 

functions. Bowman et al. (1961) obtained nearly identical values for the --
Sherwood number using the same technique as Firedlander's, but with a 
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four-term polynomial used for the concentration profile in contrast to the two­

term profile used by Friedlander. In comparison with Friedlander's early 

work (1957), Friedlander's later work (1961) and that of Levich (1952) agree 

more closely with the results of the present work for the thin boundary layer 

case, Pe > 102 • [ Yuge (1956) obtained Sherwood numbers for the case of 

Pe = 0.3, 1.0, 3.0, 10.0 which are nearly identical with the results in this 

paper, except at Pe = 0. 30.] A comparison of the Sherwood number -

Peclet number relations discussed above is indicated as case (3) on Figure 1; 

and formulae representing these relations are summarized in Table I. 

For internally circulating spheres, the present numerical scheme 

when used with the Hadamard stream functions for Newtonian fluids gave 

results in very good agreement with the Sherwood numbers calculated by 

Bowman et al. (1961) using a four-term concentration profile except when 

Pe is greater than about 5(10)3• Comparisons between these two approaches 

are presented in Figure 1 for a circulating gas bubble of carbon dioxide 

rising in water [ case (1)] and a circulating liquid droplet of ethyl acetate 

rising in water [ case(2~. 

As indicated in Figure 1, the ratio of the dispersed to the continuous 

phase viscosity has a definite effect on the intensity of internal circulation 

and, therefore, the mass transfer rates. The Sherwood number relation is 

inversely proportional to the value of the viscosity ratio. As expected, the 

value of the Sherwood number approaches that of non-circulating spheres 

when the viscosity ratio approaches infinity or when the Peclet number 

becomes very small. The former case implies that the spheres become 
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essentially rigid, the latter case, Sh equal to two, implies a very thick 

concentration boundary layer or diffusion into an essentially stagnant medium. 

In either case, the effect of internal circulation is negligible. 

Analytical solutions for mass transfer from circulating spheres have 

been obtained by a number of previous workers assuming a very thin 

concentration boundary layer, which is usually encountered in the high 

Peclet number region. Formulae for the Sherwood number are listed in 

Table II, and a comparison of the present model with the relations of 

previous workers is illustrated in Figure 2 for this Peclet number region. 

It should be understood that each of the analytical expressions was 

derived through several stages of approximation. For example, Griffith 

(1960) and Ward (1961) using different approximate forms for the concen­

tration distribution arrived at different relations for predicting the Sherwood 

number. Also because of different assumptions made in one stage of the 

approximation procedure, their relations have different regions of validity. 

The Peclet number criteria for the range of applicability of these 

relations will be considered first. To simplify the calculations, the case 

of a zero viscosity ratio (R = 0) will be considered as an illustration.· For 

this case, Griffith's (1958, 1960) development suggests 1 < Pe < 38.4 and 

Pe > 38.4 for Equation 21 and 23, respectively; whereas the ranges for the 

development of Ward (1961) are 1 < Pe < 1010.8 and Pe > 1010.8 for 

Equations 22 and 24, respectively. The close similarity of their Sherwood 

number relations and yet the wide difference in their region of validity 

combine to suggest the uncert~, approximate nature of the analytical 

solutions. 

10 



The inconsistency of the results of the previous workers can be seen 

from another point of view. For the case of Pe == 10\ Figure 2 indicates 

that Griffith (1958, 1960) predicts a switch-over of the power to which the 

Peclet number is raised (one-half to one-third) at R ~ 6. 55, whereas Ward 

(1961) predicts that this occurs at R ~ 1. 55. This accounts, in part, for 

the wide discrepancies between their results in the region, 1 < R < 7. 

It should be noted that both Griffith and Ward used Friedlander's 

(1957) approach of polynomial approximation for the concentration distribtuion. 

However, Ward (1961) using a four-term polynomial claimed more accurate 

results than Griffith (1960) who used a two-term polynomial. Ward's 

relation predicts lower mass transfer rates than Griffith in the low viscosity 

ratio region and higher transfer rates in the high viscosity ratio region. Thus, 

Ward's results are closer to the present model than Griffith's (1960) model, 

except for the region, 1 < R < 7. In fact, for the case of Pe = 10 4 , Figure 

2 indicates that the results of the present model are asymptotic to those of 

Ward for R > 10. However, the abrupt change from the one-half power 

Peclet number relation to the one-third power relation in Ward's work does 

not seem to be realistic. Thus, for the region, 1 < R < 100, the present 

model should be used to predict the mass transfer rate from circulating 

spheres. 

Ward's Equation 22 can be used for R > 100 as it reduces essentially 

to Equation 19 when R approaches infinity, which Firedlander (1961) claimed 

to be more realistic than Equation 18a. For the same reason, Griffith's 

Equation 21 cannot be used as it reduces identically to Equation 18a when 

11 



For the region R < 1, the present model at high Peclet numbers 

predicts lower transfer rates than Griffith (1960) and Ward (1961). In an 

article coauthored with Ward, Bowman et al. (1961) suggested the use of a 

numerical method for circulating spheres, i.e., for spheres in the low 

viscosity ratio region. This numerical method predicts lower mass trans-

fer rates than Ward's (1961) analytical solutions and, thus, compares more 

favorably with the present model. Six points from the Bowman ~ al. (1961) 

results taken from Figure 1 are replotted in Figure 2. It is interesting to 

note that for this region (R < 1) Griffith's earlier work (1958) results in the 

closest agreement with the present model for Pe = 104 , but it is Griffith's 

later work (1960) that predicts almost the same transfer rate as the present 

3 
model for Pe :5: 10 . 

On the other hand, Levich (1962) used a different approach from 

Friedlander (1957) and arrived at an analytical solution which predicts lower 

mass transfer rates than the present model for all values of Peclet numbers. 

However, in his derivation Levich used an approximate form of the stream 

function and also neglected the second term on the right-hand side of 

4 
Equation 1. It is interesting to note in Figure 2 that for Pe = 10 , the 

results of the present model are between those of Griffith (1960) and Levich 

(1962). Levich's criterion for a thin concentration boundary layer is Pe > 100. 

Therefore, the exact region of validity for the thin boundary layer assumption 

is still open to further investigation. 

Due to the various aspects of uncertainty in the analytical solutions 

in Table n, it is suggested that the present model, free from any limits.-

tions (except the numerical, finite-difference approximation) be used for 

12 



predicting mass transfer from circulating spheres. For approximate purposes, 

Ward's (1961) relationship can be used for R > 100 and Pe > 1000, and 

Griffith's (1960) results can be used for R < 1. 0 and Pe < 1000. For R < 1. 0 

. 3 
and Peclet numbers higher than about 5( 10) , both Ward's (1961) and 

Griffith's (1960) relations tend to predict high mass transfer rates which are 

too large when compared with the present model; and thus, these relations 

should not be used in this region [i.e., R < 1. 0 and Pe ~ 5(10)3 ]. 

The above discussion and comparison of continuous phase mass 

transfer models for Newtonian fluids in both phases indicates that the 

numerical technique used in this work leads to a Sherwood number-Peclet 

number relation which agrees well with the conflicting solutions of previous 

workers, particularly for Peclet numbers less than about 103• Thus, this 

investigation was extended with confidence to situations involving a non-

Newtonian continuous phase. 

Non-Newtonian Continuous Phase. The results obtained using the 

velocity components derived from the Nakano and Tien (1968) stream 

functions will be discussed first, followed by comparisons and studies of 

Sherwood number relations based upon more restrictive stream functions 

[Hirose and Moo-Young, 1969; Tomita, 1959]. 

As described earlier, the Nakano and Tien (1968) stream functions 

are applicable to either liquid droplets or gas bubbles [ assumed to be 

Newtonian fluids ] traveling under laminar flow conditions through a non-

Newtonian continuous phase described by a power-law constitutive equation. 
k 2a 

The continuous phase Sherwood number ( ~ ) was calculated as a function 

13 



of the Peclet number, Pe, flow behavior index, n, and a viscosity ratio 

parameter, X.* The Sherwood number relation obtained by considering the 

flow behavior index n equal to unity was discussed in the previous section 

for specific examples [ co2 bubbles in water; ethyl acetate droplets in 

water; and rigid spheres in any Newtonian fluid]. Mass transfer results 

using the Nakano and Tien stream functions are presented as a function of 

Pe in Figures 3a, 3b, and 3c for values of n equal to 1. 0, o. 8, and o. 6, 

respectively. On each figure, three values of the viscosity ratio parameter 
n-1 

X= VJ,d/k)(a/V 00 ) are employed: 0.01, 1. 0, and 10.0. The Sherwood 

number relations are also presented in Figure 4 to more clearly describe 

the effect of the viscosity ratio parameter X and the power-law index n. 

As may be seen in Figures 3a, 3b, and 3c, the Sherwood number 

increases with increases in Pe for both non-Newtonian and Newtonian 

continuous phases. When the Peclet number is less than about 10-2, there 

is virtually no effect of changes of Pe on droplet mass transfer rates. 

The effect of the power-law index n on mass transfer from the 

dispersed phase becomes extremely important when the Peclet number is 

greater than about 500. As n decreases from unity, the Sherwood number 

increased, i.e., increased pseudoplasticity results in an enhancement of 

mass transfer - all other variables held constant. A decrease in the value 

of n from 1. 0 to 0. 6 results in about a 25% increase in the Sherwood number. 

Nearly one-Jull.f of the increase in the value of the Sherwood number occurs 

when n decreases from 1. 0 to 0. 9. The results indicate, however, that 

the index n has a negligible effect on the continuous phase mass transfer 

14 
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rate for physical situations when the Peclet number is less than about five. 

The dependency of the Sherwood number on the viscosity ratio 

parameter X is noticeable at Peclet number greater than about 50, and the 

effect is very pronounced when the Peclet number is greater than about 500. 

As may be seen in Figure 4, the Sherwood number is most sensitive to 

changes of X for values of the viscosity parameter between 0.1 and 10. This 

figure and the tabulated results* indicate that the effect of he viscosity ratio 

parameter is negligible when X< 0. 01, almost regardless of the value of 

the Peclet number. One could define the mass transfer results for X < o. 01 

as being indicative of "fully" circulating gas bubbles or liquid droplets. The 

effect of the viscosity ratio parameter asymptotically diminishes as X 

increases beyond a value of about ten; this reflects the decrease of circula-

tion velocity within the dispersed phase, partly as a result of the relative 

increase in dispersed phase viscosity which in a practical sense would most 

likely be encountered with certain liquid droplet systems. 

Hirose and Moo-Young (1969), in a recent study of drag and mass 

transfer characteristics of a spherical gas bubble moving in creeping flow 

through a power-law non-Newtonian fluid, derived the following continuous 

phase velocity components: 

{ 6n(n-1) (1 1 1 3 1 1]} v = - [1-(1/y)] - · - l.ny + -(~) - 6 (-) cos9 
y (2n+1) · y 6 y y 

(14a) 

{~ 1 1~ 3n(n-1)(1 1 1 3 51~} . V = + 1- .-(-) - -l.ny-- (-.) + -(-) sm9 
9 2 y · (2n+1) y 5 y 6 y 

(14b) 

In the derivation of the above relations, it was assumed that the gas phase 

may be regarded as inviscid relative to the external liquid phase. At one 



point in their derivation, it was also assumed that the deviation from 

Newtonian flow is small, i.e., I n-1 I < < 1. Upon application of Baird and 

Hamielec (1962) relation for short-range diffusion from fully circulating 

spherical bubbles, Hirose and Moo-Young obtained the following relation 

between the Sherwood number, Peclet number, and power-law index, n: 

( 
~1/2 

Sh = 0. 65 1 - 47J::~~) Pe1 / 2 (15) 

The viscosity ratio parameter X is not considered in the above derivation. 

Hence, situations in which the dispersed phase viscosity is not negligible 

compared with the continuous phase non-Newtonian fluid (e. g., for some 

dispersed phase liquids) will not be properly described by Equation 15. 

Equation 15 is compared with the results obtained in this investiga-

tion (for X"" 0. 01) in Figure 5. The two approaches agree very well for 

this special case of a dispersed phase which is essentially inviscid com-

.pared with the continuous phase, except for Peclet numbers larger than 

about 5(10)3 • The exact reason for this deviation at very high Peclet 

numbers is not completely understood at this time. However, for fully 

circulating spheres (R = 0) moving through Newtonian fluids (n = 1 ), 

Equation 15 reduces to a form which predicts mass transfer rates between 

those predicted by Equations 23b and 24 [developed by Griffith (1960) and 

Ward (1961), respectively]. From the discussion presented for the New-

tonian case with circulation in an earlier section of this paper, it can also 

be reasonably deduced that Equation 15 will predict erroneously high 

Sherwood numbers in the high Peclet number region. Attempts to correct 

the original Hirose and Moo-Young expression (Equation 15) by replacing 

16 



the constant 0. 67 by the constant 0. 58 (see Equation 23a) will lead to an 

expression which agrees fairly closely with the results obtained in this work 

based upon the Nakano and Tien velocity function for the case when n is 

equal to unity and in the very high Peclet number region [Pe > 5(10)3 ]. But, 

this modified expression (or any other simple modification) will!!£!: accurately 

estimate the effect on the Sherwood number of either the power law index n 

(when n is not equal to one) or the Peclet number when the Peclet number is 

less than about 103 • It is concluded that the Hirose and Moo-Young relation 

(Equation 15) may only be used when the Peclet number is less than about 

5(10)3 and when X is less than about 0. 01. Almost all gas bubble systems 

will satisfy these criteria for X, however, not all liquid droplet systems will 

satisfy these criteria. 

In an attempt to further study and possibly explain this discrepancy 

of the Hirose - Moo- Young model, the author of this paper directly used 

the velocity components devEloped by Hirose and Moo-Young (1969) [i.e., 

Equations 14a and 14b] with the differential mass balance and boundary 

conditions used in this investigation [ Equations 1 and 2] to numerically 

solve for the Sherwood number at various values of the Peclet number and 

power-law index, n. The results are indicated in Figure 5. In contrast 

to Hirose and Moo-Young's analytic solution which was based upon some 

approximations in the integration procedure, the Sherwood number relation 

obtained numerically using their velocity components agrees very closely 

with the numerical results obtained in this work using the Nakano and Tien 

(1968) velocity components (for X s 0. 01) at all levels of the Peclet number. 

17 



It is tentatively concluded that the Hirose and Moo-Young velocity compo-

nents are correct, but there probably is an inaccurate approximation in 

their integration procedure which becomes important when Pe > 5(10)3• 

Tomita (1959) studied the drag force on a very slowly moving sphere 

(with.!!Q internal circulation) moving through a power-law type fluid by 

assuming an expression for the continuous phase stream function which 

satisfied certain boundary conditions. The corresponding velocity compo-

nents based upon these stream functions are given as follows: 

(16a) 

(16b) 

The approximate nature of the stream function is demonstrated by the fact 

that when n is equal to unity, the above velocity components do not reduce 

identically to those derived from the Stokes stream function [let R --+ oo in 

Equation 5] which were based on Newtonian fluid behavior. Despite this 

difficulty, Sherwood numbers were calculated numerically using Equations 

1, 2, and 16. The results are presented in Figure 6 as the ratio of the 

Sherwood numbers obtained using the present model based on the Tomita 

stream functions to those Sherwood numbers based on the Stokes stream 

function plotted as a function of the power-law index n, with the Peclet 

number as a parameter. At n equal to unity, all curves should coincide at 

the point [1. 0, 1. 0]; however, as seen in Figure 6 the curves do not 

coincide at this point indicating the error in the Tomita analysis. In fact, 

the discrepancy increases as Pe increases. It is also interesting to 
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observe that in the pseudoplastic region the Sherwood number based on 

Tomita's stream functions decreases as n decreases, contrary to the results 

:obtained in this work for all values of X or by the development of Hirose 

and Moo-Young (1969). 

Conclusions and Summary 

The Nakano and Tien (1968) stream functions which were developed 

for spheres of a Newtonian fluid moving in power-law type, non-Newtonian 

fluid were used in this investigation to solve for the continuoU3 phase rates 

of mass transfer in the creeping-flow region. The Sherwood number 

relation was developed for a wide range of the Peclet number, power-law 

index, and viscosity ratio parameter. The solution applies to both liquid 

droplets and gas bubbles. In the pseudoplastic region, the Sherwood 

number decreases as the power-law index increases; but this effect signifi­

cantly decreases at low Peclet numbers. 

The Hirose and Moo-Young analytic mass transfer solution for fully 

circulating bubbles and the numerical results of this investiga.tion (for 

X< 0. 01) are in close agreement except at very high Peclet numbers [Pe > 

5(10)3 ]. However, for viscosity ratio parameters greater than about o. 05, 

the results of this investigation rather than the Hirose and Moo-Young relation 

must be used to consider the relative viscous nature of the two phases. 

The Tomita stream functions for non-circulating spheres cannot be 

used to accurately predict oontinuous phase mass transfer coefficients. 
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Nomenclature 

a 

a. 1' b. 1' d. 1 1, 1, 1, 

A., B. 
1 1 

c 

c .. 
1, J, 

D 

f .. , 1 .. , p .. , q .. 
1,] 1,] 1,] 1,] 

k 
c 

K 

n 

Pe 

R 

Sh 

t .. 
1,] 

X 

',,• 
-·-·. \~.~--

= spherical radius of the dispersed phase 

= coefficients in Equation 9, defined in 
Equations lOa - lOc 

= coefficients in Equations 3a and 3b 

= concentration of the solute transferred from 
sphere into continuous phase, dimensionless 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

ooncentration of solute in finite difference 
Equations 9 and 11 

diffusivity of solute in continuous phase 

ooefficients in Equation 11, defined in 
Equations 12a - 12d 

continuous phase mass transfer coefficient 

consistency index of the power-law fluid 

flow behavior index 

Peclet number, 2aV /D, dimensionless 
Q) 

/J d/ IJ, c, dim ens ionles s 

Reynolds number, 2aV o::P/IJ., dimensionless 

average Sherwood number, k 2a/D, c 
dimensionless 

coefficients in Equation 12d, defined in 
Equation 12e 

radial velocity, dimensionless 

tangential velocity, dimensionless 

relative velocity between the sphere and 
continuous phase fluid 

20 



y 

Greek Letters 

9 

p 

a 

i 
T. 

J 

A.y 

Subscripts 

c 

d 

= radial displacement from center of sphere 

= angular displacement from the front stagna­
tion point 

= viscosity 

= density 

= exponent in Equations 3a and 3b 

= stress tensor 

= rate of deformation tensor 

= radial increment in finite difference 
equations 

= angular increment in finite difference 
equations 

= continuous phase 

= dispersed phase 
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Table I. Analytical Solutions for a Non-circulating Sphere: 

Newtonian Continuous Phase 

Equation Equation for Region of Physical 
Number Sherwood number Validity Description Reference 

17a 
, Pe Pe2 

2('+4+12+ ••• ) Pe < 1 thick B.L.* Friedlander (1957) 

17b 
9 9 2 Pe < 1 thick B.L. Bowman, Ward, 2 + 16Pe + "'64"Pe + ..• 

Johnson, Trass (1961) 

18a 0. 89 Pe 113 Pe > 103 thin B.L. Friedlander (1957) 

1/3 3 
18b 0. 978 Pe Pe > 10 thin B. L. Bowman, Ward 

Johnson, Trass (1961) 

1/3 2 
19 0. 991 Pe Pe > 10 thin B.L. Friedlander (1961) 

20a 0. 997 Pe 113 Pe > 10 
2 

thin B.L. Levich (1952) 

20b 0. 64 Pe 
1/3 

Pe >>1 thin B.L. Levich (1962) 

*B. L. =boundary layer 

!:.:> 
Cl!l 



Table II. Analytical Solutions for a Circulating Sphere: 

Newtonian Continuous Phase; Thin Concentration Boundary Layer 

Equation Equation for Region of 
Number Sherwood Number Validity, Re < 1 Reference 

21 0.89 Pe1/3 (-!; :·:3) 1/3 2 
1 < Pe < 2.4(3R + 4) (R + 1) Griffith (1960) 

22 0 98 p 1/3 R + 1. 58//3 
• e ( R+1 

3 2 
10 < Pe < 2. 8(12R + 19) (R + 1) Ward (1961) 

1/2 1 
1/2 2 

23a 0.58 Pe <n + 1 ) Pe > 2.4(3R + 4) (R + 1) Griffith (1958) 

1/2 1 
1/2 

2 23b 0. 67 Pe (R'+!) Pe > 2.4(3R + 4) (R + 1) > 1 Griffith (1960) 

24 
1/2 1 1/2 2 

0. 61 Pe (R + 1) ) Pe > 2. 8(12R + 19) (R + 1) Ward (1961) 

2 1/2 1 
1/2 

25 ..;&; Pe (ii'+!) Pe>>1 Levich (1962) 

to:> 

""' 
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Figure 1. Sherwood Number as a Function of Peclet Number for 
Selected Newtonian Systems: (1) carbon dioxide bubble 
in water; (2) ethyl acetate droplet in water; (3) any 
non-circulating system. 
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Figure 2. Comparison of Current Model with Previous Studies 
for a Newtonian Continuous Phase: Effect of Viscosity 
Ratio in High Peclet Number Region. 
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Figure 3(a). Sherwood Number as a Function of Peclet Number and the Viscosity Ratio 
Parameter: based on the Nakano and Tien Stream Functions (n=l. 0). 
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Figure 3(b). Sherwood Number as a Function of Peclet Number and the Viscosity Ratio 
Parameter: based on Nakano and Tien Stream Functions (n=0.8). 
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Parameter: based on the Nakano and Tien Stream Functions (n=0.6). 
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Figure 4. The Effect of the Viscosity Ratio Parameter X on the Sherwood 
Number for Representative Values of the Power-law index n 
and Peclet Number: based on the Nakano and Tien Stream 
Functions. 
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Figure 5. Effect of Non-Newtonian Behavior on Mass Transfer from 
Circulating Gas Bubbles: Comparison of Various Models. 
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Figure 6. Effect of Non-Newtonian Behavior for Non-Circulating 
Spheres using the Tomita Stream Functions. 

32 



Appendix A. Derivation of Mathematical Model 

The Governing Equation. In a binary diffusion system where 

(i) no chemical reaction occurs 

(ii) no thermal, pressure and forced diffusion 

(iii) density and diffusivity are constant 

(iv) the solution is dilute 

the equation of continuity (Bird, Stewart, Lightfoot, 1963) can be written as 

oC'A 2 
- + (II I. V'C I ) = D V' c I 
ot A AB A 

(A.1) 

Rewriting Equation A.1 in spherical coordinates with the origin at the 

center of the sphere, one obtains 

oC' ac' v' oC' oC' A A ~g A 1 A 
- + (II I - + ~ - +II' -) 

ot r or r oe e r sine 0 cp 

[
1 o 2 oC'A 1 

= DAB 2 or (r ar) + 2 . e 
o . oC'A 1 

oe (sme ae-> + 2 . 2 
r sm e r rsm 

Assuming that 

(i) steady state conditions have been reached, i.e. 
oC'A 

ot = 0 

(ii) the flow around the sphere is axially symmetric, i.e. 

ac' A 

"""if = o, 
o2c' A 

=0 

(iii) diffusion in tangential direction is negligible, i.e. 

ac' 
DAB 2 

1 ...2_ (sin B ~) = 0 ae ae 
r sine 

then from Equation A.2 we obtain 

(A. 2) 

33 



oC' v' oC' oc' o2c• 
A 8 A 2 A A 

V' -+--=D (--+ ) 
r or r '08 AB r or 2 

Introducing dimensionless variables 

y =!:., dimensionless radial distance 
a 

Pe = 2aV /D, the Peclet number 
co 

or 

C = (CA_ -CA)/(C~- CA)' dimensionless concentration 

V = V' /V , v8 = V 18/v , dimensionless velocities y r co co 

(A.3) 

we can rewrite the governing equation A. 3 in dimensionless form as follows: 

(A.4) 

The Boundary Conditions. 

(i) The solute concentration has reached its equilibrium value at the 

surface of the sphere, i.e. 

C' = C* A A 
at r=a (A. 5) 

or in dimensionless form 

c = 0 at y=l (A. 6) 

(ii) The solute concentration at a far distance from the sphere surface 

is essentially equal to the bulk concentration, i.e. 

C' = C' A co 
at r-+co (A. 7) 

or in dimensionless form 

c =1 at y-+co (A.S) 

(iii) The concentration profile is symmetric with respect to the 8 
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axisate=o, 71, i.e. 

oC' 
A 

-=0 ae at 

or in dimensionless fonn 

Q2 = 0 oe at 

e = o, 11 (A. 9) 

a= o, .,. (A.lO) 

Velocity Components. The velocity components used in this work are 

derived from the Nakano and Tien external stream function as follows: 

1 2 a A2 2 B1 B2 2 
l/.>c = (-2 r + A1r + -;-><1 -cos 8) + (-;"" + 2)cos8(1 -cos 8) (A.11) 

r 

where the exponent a and the coefficients, A1 , A2, B1 , and B2 are detennined 

by the hydrodynamic boundary conditions of the system (see Appendix D). 

The basic assumptions for the system are listed in Section 2. The velocity 

components are derived by use of the following relationships: 

1 v = _..;;;__ 

Y y2sin8 

-1 v = e ysine 

(A.12) 

(A.13) 

Similarly, the velocity components describing a circulating sphere in creeping 

flow where both continuous and dispersed phases are Newtonian fluids are 

derived from the Hadamard external stream function as follows: 

1 ( 3X +2 1 1 X 1 d 2 . 2 .1, = -- 1- (-)- +-(.......-)- y sm 9 
'¥'c 2 2X+2 y 2 X+l y3 

(A.14) 

The Average Sherwood Number. From Fick's first law of diffusion in a 

binary system, the molar diffusion flux of the component A is given by 
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36 

N = x (N + N ) - C'D 'VX 
A a A B AB A (A .15) 

where C' is molar density of solution and x A is molar fraction of the solute. 

If the molar flux of the solute resulting from the bulk motion of the fluid 

is negligible in the creeping flow region, then 

NA =- C'D AB'VXA (A.l6) 

For spherical coordinates if we neglect diffusion in tangential direction 

and assume axisymmetry of the flow, then Equation A.l6 becomes, i.e. 

OXA 
N = -C'D -

A AB or 
(A.l7) 

Again assuming the density constant, we have 

(A.l8) 

If we focus our attention on the sphere surface, r =a, through which the 

solute enters the stream at the local rate N A moles/(unit area) (unit time), 

then Equation A.l8 becomes 

(A.l9) 

r=a 

Now, the molar flux across an interface can be obtained through the 

definition of a mass transfer coefficient as follows: 

N = - k (C' - C' ) 
AO c co A 

(A.20) 

If we consider the sphere surface as the interface, then at r ==a, CA=C*A 

and Equation A.20 becomes 

N = - k (C' - C * ) at AO c oo A 
r=a (A.21) 



Equating Equations A.19 and A. 21 we obtain 

ac' A k (C' -C*) = D -
c oo A AB or 

r=a 

Introducing dimensionless variables 

r 
y =;' 

C' - C* A A 
c = c I - C* 

oo A 

one obtains after rearrangement the local Sherwood number as follows: 

(A.22) 

(A. 23) 

(A.24) 

The average Sherwood number for a sphere can be obtained by integra-

tion over the surface of the sphere, i.e. 

2 r" o c . 27Ta . Jo 2(~) smede 
= ------y--"-y-=1 ___ _ 

2 
47Ta 

(A.25) 
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Appendix B. Discussion of the Numerical Solution 

Derivation of Finite Difference Equations. The boundary value problem 

of Equations 1 and 2a - 2c was solved in this work by use of Crank-Nicolson 

implicit method. Thus Equation 1 is rewritten as 

v _ __!_ ac + ~ oc =..!. o2c 
< y Pey> oY y oe Pe oy2 

or in finite difference form 

4 (c · 1 · 1 - c · 1 · 1 
(V y- Pe Y)l1+ • J+2(AY) 1- • J+ 

ve (c .. 1- c. y + (-) 1, ]+ 1, J 
y (~) 

2 1 [c 1 · 1 - 2 c. · 1 + c. 1 · 1 = _ (;)"') i+ , J+ 21, ]+ 1- 1 ]+ 

Pe 2 (Av) 

c. 1 . - 2 c. . + c. 1 ~ 1+ • J 1, J 1- • J 
+ 2 

(AY) 
2 

oC o C . ted b f' 't d~ee where the derivatives -and- are approx1ma y lD1 e .LLJ.erence 
oy oy2· 

form according to Crank-Nicolson technique. After rearrangement 

Equation B. 2 becomes 

1 __y_ 1 c + -2 2- e c G v ~ l v J Pe(/ly)2 + 4(AY) - Pey(Av) i-1, j+1 Petav> y(fl.9) i,j+1 

[ 
1 vY 1 J + 2 - + ci+1 j+1 

Pe(AY) 4(~) Pey(AJ) ' 

(B.1) 

(B.2) 

j ( v j 1 ~ e - c. . - 2 + c . 
Pey(Ay) 1- 1 •3 Pe(Ay) y(b,9) i,J 
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~+ 1 Jc 
4(~Y) Pey(~y) i+1 , j 

(B. 3) 

It should be noted that all the coefficients are to be evaluated at the point 

(~, j~8). Thus let 

1 v 
1 

f .. = +---X-
1, J 

Pe(AY) 
2 

4(Ay) Pey(~y) 

-2 J.. 
~ . = 2-

,J Pe(AY) y(.68) 

1 
v 

1 
p .. = 2 

y + 
1 ' J Pe(~Y) 4(.6y) Pey(Ay) 

Q •• =-f .. C. 1 . + t .. C .. - P .. C. 1 . 
~,J l,J 1- ,J l,J l,J 1,) 1+ ,J 

2 
t .. =---2 
1 ' J Pe~) 

~ 
y(Ae> 

then Equation B.3 becomes 

f .. c. 1 . 1+.P_ • c .. 1 +p .. c. 1 J"+1 = q1.,J. 1,J 1- ' J+ J.,J 1,]+ l,J 1+ , 

(B.4) 

(B. 5) 

(B. 6) 

(B. 7) 

(B. 8) 

(B. 9) 

Since this is an implicit scheme, we need the solution for e = 0 to initiate 

the solutions for 8 > O. From the boundary condition of Equation 2c 

oc = 0 ae at 

Equation B.1 becomes 

e = o, 1T 

2 
4 dC 2 d C 

(V y - F;"y) dY = Pe dy 2 
(B.lO) 

This is an one-dimensional problem. We may use the explicit method 

with central differences for approximation. 
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4 
(Vy- Pey) 

c -c 
i+1,1 i-1,1 

2(Ay) lc. -2 c + c J = ~. 1-1,1 i,1 i+1,1. 
Pe A 2 

('-'Y) 

After rearrangement Equation B.11 becomes 

[Pe~) +1-Pe~] ci-1,1 {P~y)j ci,1 

(B.11) 

y 

+ [Pe~) -1 + Pe~) cl+1,1 ~ 0 (B.12) 

1..1 

Notice that the above eqiation is written for the point (iAy, A9). Thus let 

2 v 
a. 1 = +J- 2 

1, Pe~y) 2 P~}!j (B.13) 

b. 1 
-4 = 

I, Pe(Ay) (B.14) 

2 v 
2 

d. 1 = _J. + 
I, Pe~) 2 Pe<4ft ~ 

(B.15) 

Then Equation B.12 becomes 

a. 1 C. 1 1 +b. 1 C. 1 +d. 1 C. 1 1 = 0 
I, 1- , I, 1, I, I+ 1 

(B.16) 

Solution of the Finite Difference Equations. Equation B.16 represents a 

set of algebraic equations which can be solved simultaneously with the bound-

ary conditions of Equations 2a and 2b as follows: 

c =0 at y=1 (B.17) 

c = 1 at y-+ CD (B.18) 

or in finite difference form 

c ='o 
i, 1 

at i=1 (B.19) 

c. 1 = l 
1, 

at i .... 00 (B. 20) 
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To satisfy the boundary condition of Equation B. 20 sixteen steps from 

the sphere surface are considered sufficient to approximate the infinite 

distance where the concentration approaches the bulk concentration provided 

that the step size is correctly chosen for different Peclet numbers. The 

choice of fly and A.a will be discussed later (see Appendix C). Once the 

solution for a= 0 is obtained, the solution for a> 0 can be obtained by 

solving Equation B. 9, B.19 and B.20 simultaneously. The system of 

algebraic equations resulting from Equations B.16, B.19 and B. 20 are as 

follows: 

= 0 

= 0 

= 0 

(B.21) 

a C +b C +d C =0 
n-1, 1 n-2, 1 n-1, 1 n-1, 1 n-1, 1 n, 1 

a C +b C 
n.1 n-1,1 n,1 n,1 

=-d 
n,1 

Similarly, the system of algebraic equations resulting from Equations B. 9, 

B.19 and B. 20 are as follows: 

i c.. +£. c +n... c . 
-:J,j~,j+l 3,j 3,j+l ·;:s,j 4,J+l = <la,j 
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f 1 . c 2 . -t£. 1 . c 1 . +P. 1 . c . 11- ,J n- ,J n- ,J n- ,J n- ,J n,J 

f.C 1 .+.t .C. 
n,J n- ,J n,J n,J 

(B. 22) 

= ~-l,j 

= -P. +a n, j n,j 

Both Equations B. 21 and B.22 can be solved by Gauss elimination method. 

Thus the solution for equation B. 21 can be calculated from 

c = Sn,l 
n,l ~ 1 n, 

1 
C. 1 =- (S. 1 -d. 1 C. 1 1 ) i = n-1, n~2, ... ,. , 1 

I, a. 1 I, I, I+ , 
I, 

where the a's and S1s are given recursively by 

a. 1 
b b -...!a.:. d al,l = 1,1; ai,l = i,l i-1,1 

ai-l 1 
' 

-ai 1 
S =d ;S. =~ S. 1, 1 1, 1 I, 1 a i _1, 1 I-1, 1 i = 2, 3, .••• , n -1 

a 
s = -d - ..E.&1:. s 
n,l n,1 an-1 , 1 n-1,1 

Similarly, the solution for Equation B. 22 can be calculated from 

s . 
c.=~ 

n,J t::t. -n,j 

1 
C --(S -P C ) i=n-1, n-2, .••. , 1 • " - • • • . I"+l, J. I, J (X. • I, J I, J 

I,] 

where the a's and S's are given recursively by 

f-. • 
·p_ a =.e... - ..W... P . OJ.,j = i,j; i,j I,j ~-l,j i-l,J 

(B. 23) 

(B. 24) 

(B. 25) 

(B. 26) 

(B.27) 

(B.28) 

(B.29) 

(B.30) 
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f .. 
s1 . = Q • ; s .. = q .. - ....!a.L s. 1 . i = ~. ~ ..... , n-1 

,J ~,] 1,J 1,J Q. 1 . 1- ,J 
1- ,J 

(B.31) 

f 
s = -p + a - ...!kl.. s 
n,j n,j -n.,j ~-1 ,j n-1,j 

(B. 32) 

The above systems of equations, B.21 and B.22 can also be solved by 

Gauss-Jordon method with pivotal condensation. However, the computer 

time for each data point so obtained is more than three times that obtained 

by use of Gauss elimination method. Furthermore, the difference between 

results of the two methods is very insignificant. Thus, the use of Gauss-

Jordon instead of Gauss elimination method can not be justified. 

Calculation of Average Sherwood Number. Once the local Sherwood 

numbers for each 9 step is obtained for a set of Peclet number and viscosity 

ratio index, the average Sherwood number can be calculated by integration 

over the sphere surface according to Equation A.15. This can be done 

numerically by use of Simpson's rule which is outlined as follows: 

Let S be the numerical approximation for the average Sherwood 
2N 

numer, and 

f(9) = (~) sine 
y y=l 

(B.33) 

If we divide the interval [0, 11'] into 2N (=60) subintervals of length, /l.9= 

11' /60, then according to Simpson's rule 

s = ~(f +4f + 2f + 4f + ••. + 4f + f ) 
2N 3 o 1 2 3 59 60 

(B.34) 

where f is the value of the function f (f) evaluated ate= i(A9). 
i ' 
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Appendix C. The Computer Program 

Explanation of Computer Program. The computer program for the 

numerical solution described in Appendix B will be explained statement by 

statement by reference to statement numbers on the left hand side of the 

program listing. This program is written for the IBM, 360 model ~in the 

language of FORTRAN IV. 

In statements 1 through 3 are some of the variable names to be used in 

double precision. They are 

A(I, J) = coefficient matrix for Equations B. 21 and B. 22 

Y(I) = radial distance from sphere surface; Y(1) represents 

one step or a distance of AY away from sphere 

surface. 

U(I) = concentration obtained from solution of Equation B.21 

or B. 22, the index I is the number representing 

radial distance of the grid points. 

It should be noted that the angular distance for each grid point is con-

trolled by the DO LOOP as will be mentioned later. 

AB(I) = local Sherwood numbers for each angular step 

S(I) = s .. in Equations B.23 through B.32 
1, J 

R(I) = at • • in Euqations B. 23 through B.32 
1, J 

PE = Peclet number 

X = viscosity ratio parameter or simply viscosity ratio 

in the case of Newtonian continuous phase 

BN~ = flow behavior index of power-law fluid 



DY = step size in radial direction, 1:t,y 

FI, Al, A2, 

Bl, B2 = coefficients or exponents in Nakano and Tien stream 

DT 

VY 

vz 

AA 

BB 

DD 

SSN 

DABS, 
DSIN, 
DCOS 

function, a, A1, A2, Bl, B2 

= step size in angular direction, I:J.9 

= velocity component in radial direction V 
' y 

= velocity component in angular direction, v e 

= 1 
2 

Pe (I:J.y) 

= ve 
y/:,8 

= average Sherwood number 

= names of subroutines absolute, sine and cosine in 

double precision 

In statements 4 through 9 some physical or mathematical control variables 

are defined. Statement 4 reads in two constants, namely N the number of 

steps in the radial direction and NO the number of steps in the angular 

direction. In this particular program N is set to equall6 and NO equal 

60. The definition of three other variables MB, M and DT are presented 

in statements 5 through 7. Statement 8 starts a DO LOOP for various sets 

of PE and DY which are read in by statement 9. Once DY is specified for 

each PE, the radial distance of each grid point can be calculated as shown 

in statements 10 through 12. 
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Statement 13 starts another DO WOP which specifies various X, 

BN, FI, A1, A2, B1, B2 in statement 14 for each set of PE and DY. Now, 

we are in a position to find a solution for the concentration distribution for 

a set of PE, X and BN. Notice here that the coefficients or exponents Q, 

A1, A2, B1 , B2 can be determined once X and n are known. 

The solution of the concentration distribution for e = 0 is programmed 

in statements 15 through 42. Statements 15 through 32 calculate the coeffic­

ients of each term in Equation B. 21. The Gauss elimination method as out­

lined in Equations B. 23 through B. 2 7 is programmed in statements 33 

through 42. 

It should be mentioned that statements 21 and 26 are the velocity 

components in the radial direction which are derived from the Nakano and 

Tien stream function. For other rheological models, these two statements 

must be changed accordingly. 

The solution of the concentration distribution for B = 0 is stored in 

U(I) as indicated in statements 39 through 42. It is needed for the solution 

of the concentration distribution in the range of 0 < B < 1T • Each time the 

DO WOP started by statement 43 is executed, the angular distance is 

increased by a distance DT as indicated by statement 44. The coefficients 

for each term of Equation B.22 are calculated in statements 45 through 71. 

Again for different rheological models, the velocity components in state­

ments 47, 48, 59, 60 should be changed. The Gauss elimination scheme 

of Equations B. 28 through B. 32 are indicated by statements 72 through 

81. 
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In statement 82 the integrands for the average Sherwood numbers are 

stored in AB(I) for each value of a according to Equation B.33. For each 

set of Pe, X and n the average Sherwood number is then obtained by use of 

Simpson's rule in statements 84 through 89 according to Equation B.34. 

The results are printed out by statement 90. 
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cc 
cc 
c 

1 
2 
3 

c 
4 
5 
6 
7 
8 
9 

c 
10 
11 
12 

c 
13 
14 

c 
15 
16 

c 
17 
18 
19 
20 
21 
22 
23 

MASS TRANSFER FROM SPHERICAL CIRCULATING GAS BUBBLES AND LIQUID 
DROPLETS IN LAMINAR FLOW REGION 
NAKANO AND TIEN MODEL 
DOUBLE PRECISION A(20, 20), Y(20), U (20), AB(70), S(20), R(20) 
DOUBLE PRECISION PE,X,BN,DY, FI,A1,A2, Bl, B2, TT, VY, VZ,DT 
DOUBLE PRECISION AA,BB,DD,SSN,DABS,DSIN,DCOS 
PHYSICAL AND MATHEMATICAL CONTROL VARIABLES 
READ(1, 120)N, NO 
MB=N-1 
M=N+l 
DT=3.1415926535898INO 
DO 1968 ILOVEF=1, 10 
READ(1, 114)PE, DY 
DETERMINATION OF RADIAL GRID POINTS 
Y(l)=l.+DY 
DO 10 I=l,N 

10 Y(I+1)=Y(I)+DY 
SOLUTION FOR A PARTICULAR SET OF (PE,X, N) 
DO 1942 LB=l, 30 
READ(1, 114)X, BN, FI, A1, A2, B1, B2 
SOLUTION FOR ANGLE EQUAL TO ZERO 
TT=O. 0 

DO 22 I=1,N 
CALCULATION OF COEFFICIENT FOR EACH TERM 
DO 22 J=1,M 

22 A(I, J)=O. o 
J=O ~AI 
DO 4 7 1=,2_. MB. 

' '\ 

VY=(-. 5+1 ,(Y(I))**(FI-2. )+(A2+B1)1 (Y(I))**3+B21 (Y(I))**4)*2. 
A(I, J+1)=2. I (PE*DY)+(VY-4. I (Y(IfPE ))12. 
A (I, J+2)=-4. I (PE*DY) 

~ 
\ 

H>-
00 



24 
25 
26 
27 
28 
29 
30 
31 
32 

c 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

c 
43 
44 

c 
45 
46 
47 

48 

49 

A(I, J+3)=2./(PE*DY)-(VY-4. I (Y(I)*PE))/2. 
47 J=J+1 

VY=(-. 5+A1 *(Y(1))**(FI-2. )+(A2+B1)I(Y(l)) **3+B2I(Y(l))**4)*2. 
A (1, 1 )=-4. I (PE *DY) 
A(l, 2)=2. I(PE*DY)-(VY-4. /(Y(]J*PE ))/2. 
VY=(-. 5+Al *(Y(N))**(FI-2. )+(A2+B1)I(Y(N) )**3+B2/(Y(N))**4)*2. 
A (N' MB)=2. I (PE*DY)+(VY-4. I (Y(N)*PE ))/2. 
A (N' N)=-4. I (PE*DY) 
A(N ,M)=-(2. I(PE*DY)-(VY-4. I(Y(N)*PE))I2.) 
SOLUTION OF SIMULTANEOUS EQUATIONS 
R(1)=A(1, 1) 
DO 1 1=2, N 

1 R(1)=A(1, 1)-A(1, 1-1)/R(I-1)*A(I-1, I) 
S(l)=A(1, M) 
DO 2 1=2,N 

2 S(I)=A(I, M)-A(I, I-1)/R(I-1)*S(I -1) 
U (N )=S (N) IR(N) 
N1=N-1 
DO 3 1=1,N1 

3 U(N-I)=(S(N-1)-A(N-1, N-1+1)*U(N-I+l))/R(N-I) 
SOLUTION FOR ANGLE GREATER THAN ZERO 
DO 25 J=1,NO 
TT=TT+DT 
CALCULATION OF COEFFICIENT FOR EACH TERM 
Jl=O 
DO 471 I=2, MB 
VY=(-1. +2*Al *(Y(I))**(FI-2)+2*A2/(Y(I))**3)*DCOS(TT)+(Bli(Y(I))**3 

• .J .. 

2+B2/(Y(I))**4)*(2*(DCOS(TT))**2-(DSIN(TT))**2) //. ' 
VZ=(1-Al *FI*(Y(I) )** (F1 -2)+A2/ (Y(I) )**3)*DSIN (TT)+(B1/ (Y(I))**3b'2* 

2B2/ (Y(1) )**4)*DCOS(TT)*DSIN(TT) 
AA=l. I (PE*DY*DY) 

Jo!::.. 
~ 



50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

60 

61 
62 
63 
64 
65 
66 
67 
68 
69 
70 

71 
c 

72 
73 
74 
75 
76 
77 

BB=(VY -4. I (PE *Y (I)))/ (4. *DY) 
DD=VZ/(Y(I)*DT) 
A(I, Jl+1)=AA+BB 
A (I, J1 +2)=-2. *AA-DD 
A(I, Jl+3)=AA-BB 
A(I,M)=-(AA+BB)*U (1-1)+(2. *AA-DD) *U (I)-(AA-BB)*U(I+1) 

471 J1=J1+1 
K=1 lc 

DO 472 1=1, 2 ( 

VY=(-1. +2*A1 *(Y(K) )**(FI-2)+2*A2/ (Y(K) )**3{nCOS(TT)+(B1/(Y(K))**3 -•·· 
2+B2/(Y(K))**4)*(2*(DCOS(TT))**2-(DSIN(TT))**2) /_ . .---- ' 

VZ=(1-A1 *FI*(Y(K) )**(FI-2 )+A2/ (Y(K) )**3 )*DSIN (TT)+(B1/ (Y(K))**362* 
2B2/ (Y(K))**4)*DCOS(TT)*DSIN (TT) 

BB=(VY-4. /(PE*Y(K)))/(4. *DY) 
DD=VZ/(Y(K)*DT) 
IF(K-1)473,473, 474 

473 A(1, 1)=-2*AA-DD 
A(1, 2)=AA-BB 
A (1, M)=(2*AA-DD)*U (1)-(AA-BB)*U (2) 
GO TO 472 

474 A(N,MB)=AA+BB 
A(N, N)=-2*AA-DD 
A(N, M)=-(AA+BB)*U(MB )+(2*AA-DD)*U (N)-(AA-BB)*2. 

472 K=K+MB 
SOLUTION OF SIMULTANEOUS EQUATIONS 
R(1)=A(l, 1) 
DO 171 I=2,N 

171 R(I)=A(I, 1)-A(I, I-l)/R(I-1)*A(I-1, I) 
S(1)=A(1, M) 
DO 272 I=2,N 

272 S(I)=A(I, M)-A(I, I-1)/R(I-1)*S(I-1) 

en 
0 



78 
79 
80 
81 

82 
83 

84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 

95 
96 

c 

c 

U (N)=S(N)/R(N) 
N1=N-1 
DO 373 1=1, N1 

373 U(N-I)=(S(N-1)-A(N-I, N-I+l)*U(N-1+1))/R(N-1) 
CALCULATION FOR LOCAL SHERWOOD NUMBER 
AB(J+1)=U(l)/DY*DSIN(TT) 

25 CONTINUE 
CALCULATION FOR AVERAGE SHERWOOD NUMBER 
AB(l)=O 
SSN=AB(1)+4*AB(2) 
Nll=N0/2-1 t 
DO 97 L=1,Nll /L // -· 

97 SSN=2*AB(1+2*ll+4*AB(2+2>1fi)-+SSN 
SSN=(SSN+AB(N0+1 ))*(3.1415963/ (N0*3)) 

1942 WRITE(3, 117)PE,X, BN, SSN 
1968 CONTINUE 

999 STOP 
114 FORMAT(7D10.1) 
117 FORMAT(///6X, 'PE=',D16.8,4X, 'X=',D16.8,4X, 'N=',D16.8,4X, 'SHERWOOD 

2=', Dl6.8) 
120 FORMAT(2UO) 

END 

PE= O.lOOOOOOOD 02 X= 0.10000000D 02 N= 0. 90000000D 00 SHEERWOOD= 0. 329102660 01 

PE= 0.10000000D 02 X= 0.20000000D 01 N= 0. 90000000D 00 SHEERWOOD= 0. 34114606D 01 

PE= 0.10000000D 02 X= O.lOOOOOOOD 01 N= 0. 90000000D 00 SHEERWOOD= 0. 34936874D 01 

Cll ..... 



Determiniation of Step Sizes for Numerical Solution. Since an attempt to 

solve Equation B.l by the explicit method results in a failure to maintain both 

convergence and stability, the Crank-Nicolson technique has to be used. For 

a simple parabolic equation such as 

ac a2c -=--ae ay2 

The Crank-Nicolson implicit scheme proves to be convergent and stable for 

all finite values of the ratio, A9/ (AY)2. However, this does not apply to a 

more complicated parabolic equation such as Equation B.l. 

As can be seen in Appendix B the coefficients of the partial derivatives 

in Equation B.l are not constants but are functions of 8, y and Pe. It is 

found that convergence and stability can not be ensured for all finite values 

2 
of A9/(1Jy) for this type of equation. In fact, indiscriminate use of A9 and 

AY will result in an average Sherwood number different from the correct 

value. 

In this program an angular increment of three degrees, A9 = "/60, is 

used. Changing the angular increment to one and half degree, /l9 = 1J' /120, 

results in only about o. 5% change in the calculated value of average 

Sherwood number when the Peclet number is equal to to\ the radial 

increment being lept constant. However, for a fixed value of ~' the 

results show a strong dependence on IJ.y. The Stokes model is used for the 

above investigation. 

The strong dependence of the average Sherwood number on flY may be 

explained by the existence of concentration boundary layer outside the 

sphere surface. The boundary layer thickness decreases with the increase 
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of the Peclet number which is defined as Pe = V 2a/D. It is conceivable that 
CXI 

for a certain value of Peclet number the boundary layer thickness is fixed 

assuming that other factors remain unchanged. Therefore, if the angular 

increment and the number of steps in the radial direction are held constant, 

then the step size, /:ly, should be properly chosen for each Peclet number so 

that the maximum radial distance will fall within a realistic range of actual 

boundary layer thiclmess. This is necessary because the boundary condition of 

unity concentration outside the boundary layer must be satisfied according to 

Equation A. 8. Otherwise, the concentration profile would be stretched or 

contracted should the Ay be too large or too small. (It should be noted that 

this effect of Ay is not so significant for the low Peclet number region. In 

this region mass transfer is slow and the concentration boundary layer is so 

thick that any deviation from the actual thickness will not have a pronounced 

effect on the value of Sh). Consequently, this would cause inaccuracy in the 

results of average Sherwood numbers. 

Figures C. I and c. II show the effect of /)yon the average Sherwood 

number for various Peclet numbers. For this program sixteen steps are 

chosen for the radial direction and sixty steps for the angular direction. 

As can be seen in the figures, the right hand portion of each curve shows a 

strong dependence of average Sherwood number on Ay. In these situations 

Ay is too large. This may have two effects on the results. First, the 

concentration profile is stretched; second, Ay is not small enough to ensure 

sufficient convergence. On the other hand, the left hand portion of each 

curve shows the fact of concentration profile being contracted and a sign of 
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instability as fly becomes too small. 

The flat portion of each curve indicates numerical stability and shows a 

result essentially identical to the results of previous workers using Stokes 

stream function. This gives the correct range of Ay values which may be 

used. The exact values of Ay, used as shown by dots in the figures, are 

determined by comparison of the calculated values of average Sherwood 

numbers with those obtained by latest workers using Stokes stream function. 

These values are assumed to apply for different stream functions. A list of 

fly values for various Peclet numbers is presented in Table C. I. 

Tables of Numerical Results. The following tables of the results from 

numerical solution to different physical systems are listed with the names of 

previous workers to identify the different rheological models assumed for 

the continuous phase. In all cases, the dispersed phase is always Newtonian, 

and the basic assumptions listed in Section 2 or Appendix A apply. 

-2 
The numerical results show that for X (or R) larger than about 10 

the numerical scheme is convergent and stable. However, for X (or R) less 

than about 10-2 the computer program becomes unstable for some points 

although convergence is still observed. These can be seen by comparison 

-3 
of average Sherwood numbers between the cases of X(orR) equal10 and 

-2 
10 • 
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Figure C.1. Effect of Radial Increment on Sherwood Number for Various Peclet 
Numbers (Pe = 10"" 106). 
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Figure C.2. Effect of Radial Increment on Sherwood Number for Various Peclet 
Numbers (Pe = 0. 001,.,. 1. 0). 
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Table C.I 

Radial Increment for Various Peclet Numbers 

Pe 

0.001 

0.01 

0.1 

1.0 

10 

100 

1000 

10,000 

100,000 

1000,900 

Pe 

10-3 

10 
-2 

10-1 

1 

10 

102 

103 

104 

105 

106 

Table c.n 
Stokes Model 

(X = co, n = 1) 

/1y 

0.2424 

0.2410 

0.2260 

0.1620 

0.0880 

0.0400 

o. 0370 

0.0340 

0.0074 

0.0030 

Sh 

2.00056 

2. 00491 

2.05566 

2.35320 

3.20851 

5.48417 

10.42634 

21.67877 

46.22968 

98.86883 

57 



R=l0-3 R=lO 
-2 

Pe Sh Sh -
10-3 2.0006 2.0006 

10-2 2.0049 2. 0049 

10-1 2.0556 2.0556 

1 2.3634 2.3633 

10 3.4889 3,4860 

102 7.7387 7.7191 

103 20.9514 20.8764 

104 55.9544 55.8223 

105 193.8298 198.0832 

106 579.3642 577.6736 

Table c. m 
Hadamard Model 

(X= R, n = 1) 

R=lO-l R=l 

Sh Sh 

2.0006 2.0006 

2.0049 2.0049 

2.0556 2.0556 

2.3623 2.3577 

3.4596 3.3351 

7. 5392 6.6029 

20.1817 16.2845 

54.5277 44.7564 

186.0347 142.1475 

561.1356 438.6675 

R~ 

Sh 

2.0006 

2.0049 

2.0556 

2.3560 

3.2892 

6.2166 

14.4715 

38.7393 

118.5553 

364.4255 

R=lO 

Sh 

2.0006 

2.0049 

2.0556 

2.3539 

3.2290 

5.6735 

11.5727 

27.0859 

71.4611 

204.2248 

en 
00 



R=10 
2 

Pe Sh 
-

10-3 2.0006 

10-2 2.0049 

10-1 2.0557 

1 2.3533 

10 3.2106 

102 5. 5042 

103 10.5516 

104 22.2904 

105 49.2172 

106 112.8270 

Table C. III cont'd 

Hadamard Model 

(X= R, n = 1) 

R=10 
3 

R=104 

Sh Sh 

2.0006 2.0006 

2.0049 2.0049 

2.0557 2.0557 

2.3532 2.3532 

3.2087 3.2085 

5.4862 5.4844 

10.4390 10.4276 

21.7405 21.6848 

46.5322 46.2597 

100.2956 99.0118 

R=105 

Sh 

2.0006 

2.0049 

2.0557 

2.3532 

3.2085 

5.4842 

10.4264 

21.6793 

46.2325 

98.8831 

C.TI 
co 



X=10-3 -2 
X=10 

Pe Sh Sh 

10-3 2.0006 2. 0006 

10 
-2 

2.0049 2.0049 

10-1 2.0556 2.0556 

1 2. 3634 2. 3633 

10 3.4888 3.4859 

102 7.7374 7. 7185 

103 20.9411 20.8713 

104 55.9306 55.8103 

105 193.3889 192.9380 

106 576.0532 576.0152 

Table c. IV 

Nakano and Tien Model 

n = 1.0 

X=10-1 X=1 

Sh Sh 

2.0006 2.0006 

2.0049 2.0049 

2.0556 2.0556 

2.3623 2.3577 

3.4597 3. 3351 

7.5400 6.6030 

20.1880 16.2845 

54.5443 44.7566 

186.5428 142.1920 

563.3444 438.6675 

X=2 

Sh 

2.0006 

2.0049 

2.0556 

2.3560 

3.2892 

6.2163 

14.4700 

38.7341 

118.5598 

364.3582 

X=10 

Sh 

2.0006 

2.0049 

2.0556 

2.3539 

3.2289 

5.6733 

11.5713 

27.0799 

71.4386 

204.1242 

m 
0 



X=10-3 X=10 
-2 

Pe Sh Sh 
-

10-3 2.0006 2.0006 

10-2 2. 0049 2. 0049 

10-1 2.0556 2.0556 

1 2.3686 2.3694 

10 3.5866 3.5999 

102 8.2082 8.2563 

-103 22.5027 22.5857 

104 58.1718 58.2165 

105 211.9687 208.4450 

106 625.6226 609.9635 

Table C. IV cont'd 

Nakano and Tien Model 

n = 0.9 

X=10 
-1 

X=1 

Sh Sh 

2.0006 2.0006 

2.0049 2.0049 

2.0556 2.0556 

2.3685 2.3662 

3.5772 3.4937 

8.1022 7,3876 

21.9789 18.8090 

57.3219 50.8245 

202.0507 166.5473 

595.3580 508.7149 

X=2 

Sh 

2.0006 

2,0049 

2.0556 

2.3627 

3.4115 

6.8224 

16.3912 

44.0544 

136.9050 

420.2894 

X=10 

Sh 

2.0006 

2.0049 

2.0556 

2.3575 

3.2910 

5.9694 

12.4649 

29.4968 

78.3173 

224.7773 

0') 
...... 



X=10-3 X=10-2 

Pe Sh Sh 

10-3 2.0006 2. 0006 

10 
-2 

2. 0049 2.0049 

10-1 2.0556 2.0556 

1 2.3745 2.3752 

10 3. 6943 3.7067 

102 8.6867 8.7373 

103 23.9546 '2 ''•. ' ~. 24.1041 

104 59.6847 59.8114 

105 219.3981 220.5068 

106 628.7744 630.5960 

Table c. IV cont'd 

Nakano and Tien Model 

n = 0.8 

X=10-1 X=1 

Sh Sh 

2.0006 2.0006 

2.0049 2.0049 

2.0556 2.0556 

2.3748 2.3715 

3.6923 3.5892 

8. 6271 7.8242 

23.6529 20.2250 

59.2759 53.6371 

216.3580 184.9600 

623.4022 573.8366 

X=2 
.. 

Sh 

2.0006 

2.0049 

2.0556 

2.3686 

3. 5161 

7.3006 

17.9007 

47.9281 

156.2002 

500.7400 

X=10 
----~ 

Sh 

2.0006 

2.0049 

2.0556 

2.3628 

3.3819 

6.3728 

13.6088 

32,6458 

88.5689 

268.2706 

Cj) 
N 



X=l0-3 X=10 
-2 

Pe Sh Sh 

10-3 2.0006 2.0006 

10-2 2. 0049 2. 0049 

10-1 2.0556 2.0556 

1 2.3801 2.3812 

10 3.7956 3.8149 

102 9.1373 9.2191 

103 25.3792 25.6286 

104 60.8397 60.9998 

105 229.5931 231.2762 

106 645.5344 647.7576 

Table c. IV cont'd 

Nakano and Tien Model 

n = 0.7 

X=10-1 X=1 

Sh Sh 

2.0006 2.0006 

2.0049 2.0049 

2.0556 2.0556 

2.3792 2.3762 

3.7739 3.6741 

8.9929 8.1941 

24.8144 21.3201 

60.3091 55.3216 

224.9418 189.2216 

638.1394 566.2556 

X=2 

Sh 

2.0006 

2.0049 

2.0556 

2.3711 

3.5574 

7.4670 

18.3530 

48.8634 

160.5452 

515.9271 

X=10 

Sh 

2.0006 

2.0049 

2.0557 

2.3668 

3.4480 

6.6442 

14.3023 

34.2780 

90.6876 

25~.6597 

O'l 
~ 



Table C. IV cont'd 

Nakano and Tien Model 

n = 0.6 

X=10-3 X=10 
-2 X=10-1 X=1 X=2 X=10 

Pe Sh Sh Sh Sh Sh Sh 

10-3 2.0006 2.0006 2.0006 2.0006 2.0006 2.0006 

10-2 2. 0049 2. 0049 2.0049 2.0049 2.0049 2.0049 

10-1 2.0556 2.0556 2.0556 2.0556 2.0557 2.0557 

1 2.3831 2.3821 2.3830 2.3760 2.3732 2.3701 

10 3.8505 3. 8310 3.8427 3.6676 3.5912 3.5045 

102 9.3757 9. 2914 9.3016 8.1400 7.5779 6.8677 

103 26.0854 25.8581 25.7871 21.0697 '"Z.i :;·1 18 .. 5078 14.8505 

104 61.2904 61.1490 61.0061 54 •. 8397 48.8382 35.5256 

105 231.9253 233.3408 231.7319 186.3816 153.9696 92.9264 

106 639.6737 649.9659 646.2622 559.0062 469.4186 263.8608 

~ 



n=1.4 

Pe Sh 

1()-3 2.0006 

10-2 2. 0049 

10-1 2.0557 

1 2.3574 

10 3.2767 

102 5. 7838 

103 11.2772 

104 23.6494 

105 50.4521 

106 108.0248 

Table c. V 

Tomita Model 

(X= Ol.l) 

n=l.3 

Sh 

2.0006 

2.0049 

2.0557 

2.3555 

3.2437 

5. 6291 

10.8257 

22.5666 

48.0983 

102.8829 

n=1.2 

Sh 

2.0006 

2. 0049 

2.0557 

2.3537 

3.2123 

5.4786 

10.3615 

23.6494 

45.6848 

97. 6109 

n=1.1 

Sh 

2.0006 

2. 0049 

2.0557 

2.3520 

3.1830 

5.3351 

9.8833 

20.3257 

43.2047 

92.1935 

~ 
01 



n=1.0 

Pe Sh 

10-3 2.0006 

10-2 2. 0049 

10-1 2.0557 

1 2.3505 

10 3.1562 

102 5.2017 

103 9.3893 

104 19.1607 

105 40.6493 

106 86.6125 

Table C. V cont'd 

Tomita Model 

(X=oo) 

n=0.9 n=0.8 

Sh Sh 

2.0006 2.0006 

2.0049 2. 0049 

2.0557 2.0557 

2.3492 2.3481 

3.1325 3.1123 

5.0821 4.9794 

8.8773 8.3445 

17.9602 16.7183 

38.0083 35.2682 

80.8450 74.8623 

n=0.7 

Sh 

2.0006 

2.0049 

2.0557 

2.3472 

3.0959 

4. 8962 

7.7873 

15.4273 

32.4119 

68.6289 

n=0.6 

Sh 

2.0006 

2.0049 

2.0558 

2.3465 

3.0834 

4. 8337 

7. 2018 

14.0765 

29.4166 

62.1154 

0) 
0) 



n=1.4 

Pe Sh 

10-3 2.0006 

10-2 2. 0049 

10-1 2.0556 

1 2.3496 

10 2.7208 

102 5. 8036 

103 14.2714 

104 40.5598 

105 130.1800 

106 405.3200 

Table C. VI 

Hirose and Moo-Young Model 

(X= 0) 

n=1.3 n=1.2 

Sh Sh 

2.0006 2.0006 

2.0049 2. 0049 

2.0556 2.0556 

2.3523 2.3556 

2.8484 2.9700 

6.3484 6.8603 

16.3513 18.1108 

46.2729 50.5473 

150.6529 167.5913 

466.6788 514.5432 

\'· 

n=1.1 

Sh 

2.0006 

2.0049 

2.0556 

2.3593 

3.0834 

7. 3251 

19.6321 

53.6910 

181.8681 

551.4694 

0) 
""l 



n=1.0 

Pe Sh 

10-3 2.0006 

10-2 2. 0049 

10-1 2.0556 

1 2.3634 

10 3.1873 

102 7. 7410 

103 20.9598 

104 55.9691 

105 193.9133 

106 579.5524 

Table C. VI cont'd 

Hirose and Moo-Young Model 

(X= 0) 

n=0.9 n=0.8 

Sh Sh 

2.0006 2.0006 

2.0049 2. 0049 

2.0556 2.0556 

2.3677 2.3720 

3.2813 3. 3644 

8.1089 8.4297 

22.1184 23.1188 

57.6022 58.7619 

203.9831 212.2608 

600.6550 616.3284 

n=0.7 

Sh 

2.0006 

2.0049 

2.0556 

2.3761 

3.4358 

8.7016 

23.9617 

59.5735 

218.8820 

627.7730 

n=0.6 

Sh 

2.0006 

2. 0049 

2.0556 

2.3798 

3.4938 

8.9205 

24.6367 

60.1247 

223.9273 

635.8445 

C) 
00 



Appendix D. Review of Literature 

The fluid dynamics and solute mass transfer from laminar circulating 

spheres have been topics of considerable interest in the literature for many 

years. Some of the previous investigations of continuous mass transfer have 

been reviewed in Section 4 of the present study. For this particular case, 

the dispersed phase resistance is negligible. A more extensive review on 

the analyses of continuous phase transfer can be found in the paper of 

Sideman and Shabtai (1964). All these analyses assume that both continuous 

and dispersed phases are Newtonian fluids. Until recently no attempts have 

been made to extend these studies to non-Newtonian media. 

Hirose and Moo-Young (1969) considered the motion of a power-law 

fluid around a spherical gas bubble and obtained an approximate solution for 

the drag coefficient and mass transfer rate for this system. The approxi-

mate nature of the solution is due to an assumption that the deviation from 

Newtonian flow is small enough to warrant some quantities to be evaluated 

according to Newtonian behavior. 

The following boundary conditions are involved in the solution of 

equation of motion for axisymmetric creeping flow: 

v 
V = 0 ..]_ (.J) = 0 @ r = a 

r ' or r 
(D.l) 

v = v cos 8, v = -v sin 8 as r ... (X) 

r oo 8 co 

(D.2) 

The boundary condition [o(V 9 /r)/or]r=a = 0 results from the absence 

of tangential stress at the surface of clean bubbles (Calderbank and Moo­

Young, 1961) since the gas phase may be reg~rded as inviscid relative to 
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the non-Newtonian continuous phase fluid. 

The continuous phase stream function resulting from the solution of the 

boundary value problem is as follows: 

(D.3) 

or in dimensionless fonn 

1 2 6n(n-1) 1 1 1 2 
1/J = 2[ (y-y } + 2n+1 {ylny + 6<y) - 6(y)} ]sin e (D.4) 

The velocity components can be derived by use of Equations D. 4, A.12 and 

A.13, and are presented in Equations 14a and 14b. For clean bubbles, i.e. 

in the absence of frictional drag, the drag coefficient is obtained as 

n-1 2 
C == !§.. (2)n-1 (3 2 (13 + 4n-8n ) 

D Re' ) (2n+l) (n+2) (D.5) 

where 

(D.6) 

A comparison of Equation D. 5 with the drag coefficient for Newtonian 

fluids results in a correction factor for non-Newtonian behavior as shown 

below: 

(C ) n-1 2 
D non-Newtonian _ n-1 -r£13 + 4n-8n ) 

YD == (CD)Newtonian - (2) (3) (2n+1) (n+2) (D.7) 

A plot of YD against n (see Figure D.1) shows that YD is greater than unity 

for pseudoplastic fluid and less than unity for dilatant fluids. 

By use of Equation A.l3 and relation of Baird and Hamiclec (1962) for 
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mass transfer from a spherical bubble 

1 1 
2 ( ve 2 12 2 

Sh = ; t'"<-v>r=a sin 9d9J (Pe) 
• 

(D.8) 

a theoretical expression for the average Sherwood number is obtained as 

shown in Equation 15. Similarly, a comparison of the average Sherwood 

number of Equation 15 with that for bubbles in Newtonian fluid results in a 

correction factor for mass transfer ill non-Newtonian fluid, YM. 

1 
= (1 _ 4n(n-1) }2" 

YM 2n+1 (D. 9) 

Again a plot of YM against n (see Figure D.l) indicates that the mass trans­

fer coefficient is enhanced for pseudoplastics and depressed for dllatants 

compared to the situation for Newtonian fluids. Hirose and Moo-Young 

also presented some experimental results to support the relations of 

Equations D. 7 and D. 9. 

Nakano and Tien (1968) also presented an analysis of the creeping flow 

of a power-law fluid over a Newtonian circulating sphere. Unlike the work 

of Hirose and Moo-Young (1969) this analysis applies not only for gas 

bubbles, but also for liquid droplets. Two equations of motions (for the 

continuous and dispersed phase, respectively) are solved with the 

following boundary conditions: 

(V ) = (V ) = 0 
Yd Yc 

<Va>d = <Va>c 

<,. YJd = <,. ye> c 

@ y = 1 

@ y=1 

@ y=l 

(D.10) 

(D.ll) 

(D.12) 
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1 2 2 
¢ .... -- y sin e c 2 

as y-. co 

(V J and (V ) remain finite @ y = 0 
ed Y d 

The resulting continuous and dispersed phase stream functions are 

given as follows: 

z =cos e 

where the coefficients, A1, A2, B1 , B2 ••• , and the exponent a are 

(D.13) 

(D.14) 

(D.15) 

(D.16) 

numerically determined for specified values of n and X through the use of a 

combination of Galerkin's method and variational integrals and are given in 

Table D. I. The range of parameters is given as 

0.001 <X< 10.0 
(D.17) 

0. 5 < n < 1. 0 

It was found that almost identical results of the coefficients A1 , A2, B1 , B2, 

a were obtained for X = o. 001 and X s: 0. 0001. Consequently, the values 

for X = 0. 001 are taken as a lower limit in this work. 

The drag coefficient is given as 

(D.l8) 

where 
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2-n n 
pV a 

00 

N =-----
Re K (D.19) 

and YD' the correction factor is defined as 

n+1 _g_ n+1 
y = ~ I1 r1 (X x2.t. n-1 n-1 -4 

D 3 -1Jo "'d +1/Jc x )dxdZ (D.20) 

Astarita (1965) also considered the motion of a gas bubble through a power-

law fluid. A semiquantitative relationship was obtained which may be 

expressed in terms of the correction factor YD as follows: 

y 1/n 
F = ( D rigid sphere ) > 1. 5 

YD fluid sphere 
(D.21) 

X= 0 

Nakano and Tien (1968) calculated values ofF for various values of n by 

use of Equation D.20 and verified the validity of Equation D.21. 

Agreement was also found to be good between the theoretical results 

of Nakano and Tien and the experimental results of Fararoui and Kinter 

(1961) for the CMC (carboxymethylcellulose) solution. 



1.4 
Yo 

1.2 

1.0 

0.6 

0.4 

0.4 0.6 0.8 1.0 1.2 

n 

Figur~.· D.l. Results on Bubble Drag and Mass Transfer in 

Non-Newtonian Fluids (Hirose and Moo-Young, 1969) 
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Table D. I 

Numerical Values of Coefficients of Stream Functions 

X= 10 

n 1.00 0.90 0.80 0.70 0.60 

(j 1. 000 7. 269(-1) 2. 942 (-1) -6. 937 (-2) -4.284(-1) 

A1 7.273(-1) 8. 364(-1) 1.106(0) 1. 532(0) 2.492(0) 

A2 -2.273 (-1) -3. 364(-1) -6.061(-1) -1. 032 (0) -1. 992(0) 

B1 0.000 -9. 439(-8) -1.378(-7) -1. 816(-7) -2. 376(-7) 

B2 0.000 9. 439(-8) 1. 378 (-7) 1. 816(-7) 2. 376(-7) 

c1 2. 273 (-2) 2. 781 (-2) 3.428(-2) 3. 723 (-2) 3.794(-2) 

c3 -2.273 (-2) -2. 781 (-2) -3.428(-2) -3. 723(-2) -3. 794(-2) 

D1 o.ooo -4. 719(-8) -6.892(-8) -9. 079(-8) -1.188(-7) 

D2 0.000 1. 888 (-7) 2.757(-7) 3. 632(-7) 4. 751 (-7) 

D3 0.000 -1. 416(-7) -2.068(-7) -2. 724(-7) -3. 564(-7) 

X= 2. 0 

n 1.00 0.90 0. 80 0.70 0.60 

(j 1. 000 5. 562 (-1) 1. 015(-1) -1. 334(-1) -3. 767(-1) 

A1 6. 667(-1) 8.186(-1) 1.112(0) 1. 400(0) 1. 945(0) 

A2 -1. 667(-1) -3.186(-1) -6.124(-1) -9. 005(-1) -1. 445(0) 

B1 0.000 -2. 472(-7) -3.179(-7) -3. 735(-7) -4. 539(-7) 

B2 0.000 2. 472 (-7) 3.179(-7) 3. 735(-7) 4. 539(-7) 

c1 8.333(-2) 1.130(-1) 1. 347 (-1) 1. 432 (-1) 1. 437(-1) 

c3 -8. 333(-2) -1.130(-1) -1.374(-1) -1.432 (-1) -1.437 (-1) 

D1 0.000 -1. 236(-7) -1. 590(-7) -1. 868(-7) -2. 269(-7) 

D2 0.000 4. 943 (-7) 6. 359(-7) 7. 470(-7) 9. 078(-7) 

D3 0.000 -3.707(-7) -4.769(-7) -5. 603 (-7) -6.808(-7) 
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Table D. I cont'd 

Numerical Values of Coefficients of Stream Functions 

X= 1.0 

n 1.00 0.90 0.80 0.70 0.60 

(] 1.000 4. 767(-1) 7. 258(-2) -3. 712 (-1) -3. 851(-1) 

AI 6. 250(-1) 7. 782 (-1) 1. 017(0) 1. 646(0) 1. 711 (0) 

A2 -1. 250(-1) -2. 782 (-1) -5.175(-1) -1.146(0) -1.211 (0) 

Bl o.ooo -2. 608(-7) -3.363(-7) -4. 039(-7) -4. 022(-7) 

B2 0.000 2. 608(-7) 3.363(-7) 4. 039(-7) 4.022(-7) 

c1 1.250(-1) 1. 754(-1) 2. 043(-1) 2. 326(-1) 2. 240(-1) 

c3 -1. 250(-1) -1. 754(-1) -2. 043(-1) -2. 326(-1) -2. 240(-1) 

D1 o.ooo -1. 304(-7) -1. 682(-7) -2. 020(-7) -2. 011(-7) 

D2 o.ooo 5. 216(-7) 6. 727(-7) 8. 079(-7) 8. 044(-7) 

D3 o.ooo -3. 912 (-7) -5.045(-7) -6. 059(-7) -6.033(-7) 

X= 0.1 

n 1.00 0.90 0.80 0.70 0.60 

CT 1.000 6. 795(-1) 2. 795(-1) -8. 856(-2) -4. 815(-1) 

A1 5.227(-1) 5. 656(-1) 6. 665(-1) 8. 560(-1) 1. 379(0) 

A2 -2.273(-2) -6.557(-2) -1. 665(-1) -3. 560(-1) -8. 789(-1) 

Bl 0.000 -6. 270(-8) -6.589(-8) -7.222(-8) -7.173(-8) 

B2 0.000 6. 270(-8) 6.589(-8) 7. 222 (-8) 7.173(-8) 

cl 2.273(-1) 2. 750(-1) 3. 326(-1) 3. 599(-1) 3. 925(-1) 

c3 -2. 273(-1) -2. 750(-1) -3. 326(-1) -3. 599(-1) -3. 925(-1) 

D1 o.ooo -3.135(-8) -3. 294(-8) -3.611 (-8) -3. 587(-8) 

D2 o.ooo 1. 254(-7) 1.318(-7) 1.444(-7) 1.435(-7) 

D3 o.ooo -9. 405(-8) -9.883(-8) -1. 083(-7) -1. 076(-7) 



77 

Table D. I cont'd 

Numerical Values of Coefficients of Stream Functions 

X= 0.01 

n 1.00 0.90 0.80 0.70 0.60 

a 1.000 6. 898(-1) 3.191(-1) -1. 867(-1) -2.774(-1) 

A1 5. 025(-1) 5.392(-1) 6. 215(-1) 8.867(-1) 9. 765(-1) 

A2 -2. 475(-3) -3. 923 (-2) -1. 215(-1) -3. 867(-1) -4. 765(-1) 

B1 o.ooo -7. 052(-9) -6.690(-9) -7. 722(-9) -6.673 (-9) 

B2 o.ooo 7. 052(-9) 6.690(-9) 7. 722(-9) 6.673(-9) 

c1 2.475(-1) 2. 944(-1) 3.401(-1) 3. 894(-1) 3. 972(-1) 

c3 -2. 475(-1) -2. 944(-1) -3.401 (-1) -3. 894(-1) -3. 972(-1) 

D1 0.000 -3. 526(-9) -3. 345(-9) -3. 861(-9) -3. 336(-9) 

D2 0.000 1. 410(-8) 1.338(-8) 1. 544(-8) 1.335(-8) 

D3 o.ooo -1. 058(-8) -1. 003(-8) -1.158(-8) -1. 001(-8) 

X= 0.001 ./ 
n 1.00 0.90 0.80 0.70 0.60 

(] 1.000 7.415(-1) 3. 773(-1) -7 .167(-2) -3. 885(-1) 

A1 5.003(-1) 5.284(-1) 6. 016(-1) 7. 942(-1) 1.119(0) 

A2 -2. 500(-4) -2. 894(-2) -1. 016(-1) -2. 942(-1) -6.185(-1) 

B1 o.ooo -7. 020(-10) -6. 980(-10) -6. 705(-10) -6.440(-10) 

B2 0.000 7. 026(-10) 6. 980(-10) 6. 705(-10) 6.440(-10) 

c1 2. 500(-1) 2. 894(-1) 3.357(-1) 3. 814(-1) 4. 080(-1) 

c3 -2. 500(-1) -2. 894(-1) -3.357(-1) -3. 814(-1) -4. 080(-1) 

D1 0.000 -3.513 (-10) -3. 490(-10) -3.352(-10) -3. 220(-10) 

D2 0.000 1. 405(-9) 1.396(-9) 1. 341(-9) 1. 288(-9) 

D3 o.ooo -1. 054(-9) -1. 047(-9) -1. 006(-9) -9. 661(-10) 



Supplementary Nomenclature 

C' 

C' 
A 

C., D. 
1 1 

= molar density of solution 

= concentration of solute A 

= equilibrium concentration of solute A at interface 

= drag coefficient, defined in Equation D. 5 

= coefficients in Equation D.l6 

C' = bulk concentration of solute A 
00 

f(8) = (~c) sine 
uY y=l 

= molar diffusion flux of solute A 

= interfacial molar diffusion flux of solute A 

= Reynolds number, defined in Equation D.l9, dimensionless 

Re' = Reynolds number, defined in Equation D. 6, dimensionless 

r = radial displacement from center of sphere 

t = contact time 

V' = velocity 

V' = radial velocity component 
r 

V~ = axial velocity component 

V'a = tangential velocity component 

s .. 
1,J 

s2N 

Sh_toc 

YD 

= defined in Equations B. 23 through B. 32 

= defined in Equation B. 34 

= local Sherwood number 

=correction factor, defined in Equation D. 20 

YM = correction factor, defined in Equation D. 9 

z = cose 
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Supplementary Greek Letters 

a. . = defined in Equations B. 23 through B. 32 
1,] 

af> = stream function 
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