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Increasing the a c density by a reduction in bandwidth or an increase 
in number of wive numbers serves to reduce this image artifact. 

IS] W. A. Schneider, “Integral formulation for migration in two and thrce 
dimensions,”Geophysics, vol. 43, pp. 49-76, 1978. 

191 A. B. Weglein and R. H. Stolt, The Wave Physics of Downward Coq- 

V. CONCLUSIONS 

I 

tinuation, Wavelet Estimation, and Volume and Surface Scattering: 1% 
Approaches to Linear and Nonlinear Migration-Inversion. Philadel- 
Dhia: SIAM. 1992. 

We have investigated the relationship between object profile and 
received scattering data for the monostatic, or coincident source- 
receiver, tomographic measurement geometry. Use of this partic- 
ular geometry In connection with field studies employing ground 
penetrating radar may lead to a more complete exploitation of 
acquired data. With this possibility in mind, we have tried to develop 
inversion schenies that (at least for two dimensional objects) might 
be implemented in the field using a minimal amount of computing 

[lo] A. J .  Witten and W. C. King, “Acoustic imaging of subsurface feature%” 
Journal of the Environmental Engineering Division of ASCE, vol. 11 6 ,  
pp. 16-181’ 1990’ 

[ l l ]  A.J. Witten and W. C. King, “Sounding out buried waste.” C t d  
Engineering, vol. 60, pp. 62-64, May 1990. 

power (e.g., a iersonal computer). We assume from the outset that 
the objects to b.: imaged are weak scatters so that the received data is 
linearly related to the object profile via (4). Direct numerical inversion 
of this equation is still, however, computationally quite demanding. 
For two-dimenional inhomogeneities, we find that by assuming the 
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object to be deep we can relate the Fourier transform of the object 
profile, 0, to the Fourier transform of the data as in the Generalized 
Slice Theorem For objects which are in the far field of the source 
1 this can be achieved by appropriate data gathering strategies) further 
:simplification I S  possible. 

We have c1a;sified the derived inversion schemes as Fourier trans- 
form and far field methods, and have found that the Fourier transform 
method yields superior image quality. Since the implementation of 
such a method can be based on fast Fourier transforms, it offers 
considerable computational advantage over the far field method. 
While, in prixiple, application of the Fourier transform method 
is limited to r-latively deep targets, numerical simulations suggest 
that there is only minor loss of image quality associated with the 
application of this approach to shallow targets. 

As a final point we consider the use of a boundary condition which 
ignores reflections from the measurement surface. By virtue of this 
boundary condition, algorithms presented here do not account for 
multiples. For isolated inhomogeneities in a monostatic measurement 
geometry, mu1 tiples should not be significant since the measurement 
surface is not i specular reflector with respect to inhomogeneities with 
the possible exception of a small number of measurement positions. 
Multiples will be of concern when horizontal layering is present. In 
such situations, multiples can be suppressed by appropriate signal 
processing [9: prior to imaging. 
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Abstruct- The development of a neural network-based classifier ifor 
classifying three distinct scenes (urban, park and water) from several 
polarized SAR images of San Francisco Bay area is discussed. The 
principal component (PC) scheme or Karhunen -Loeve (KL) transform 
is used to extract the salient features of the input data, and to reduce 
the dimensionality of the feature space prior to the application to ithe 
neural networks. Employing PC scheme along with polarized images used 
in this study, led to substantial improvements in the classification rates 
when compared with previous studies. When a combined polarization 
architecture is used the classification rate for water, urban and park 
areas improved to loo%, 98.7%, and 96.1%, respectively. 

I. INTRODUCTION 

The Importance of high resolution ground mapping is growing 
in airborne and spaceborne radars. Synthetic-Aperture Radar (SAR) 
systems take advantage of the motion of a platform carryin!: a 
radar to synthesize the effect of a large antenna aperture rendering 
a high resolution image in the along-track direction [l]. One of 
the primary application of high resolution imagery using a S4R 
system is in terrain classification in areas such as ecology, agricultiire, 
commercial, and military [ 2 ] .  This is accomplished by assigning a 
color or a gray level value to each pixel of the major terrain (c.g., 
urban areas, parks, bodies of water, farmland, etc.) classes found in 
an image. Thus, when the classification process is completed, the 
radar image is transformed into a color-coded image showing sevxal 
types of terrains. For example, a pilot who is forced into emergency 
landing does not have the time to read arrays of radar vectors and 
make a split second decision on where to land. On the other hand, 
if he has a color-coded image displayed in his cockpit, all he would 
have to do is to look for the color designating the park areas and 
direct his aircraft to those spots. 

In this paper terrain classification is performed using artificial neu- 
ral networks [3] ,  [4]. The system consists of a preprocessor nemrork 
to extract the features directly from the data and a classifier network 
to perform real-time terrain classification. The preprocessor stage 
consists of a single layer neural network trained with the constrained 
Hebbian learning algorithm [5] ,  [6] to extract the principal conipo- 
nents (PC’s) or the Karhunen-Loeve (KL) transform [7] coefficients 
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of the image data. This scheme not only reduces the dimension of the 
classifier weight space and extracts the salient features of the image, 
but also decorrelates the data which is an important property for 
training and testing the neural network classifier. The classification 
is performed by using a multilayer back-propagation network which 
provides the complex decision region needed for classifying different 
terrains in SAR images. Several images obtained using different 
radar polarizations are used to train the classifier network optimally. 
Comparison of the results of this paper with those of other similar 
studies [8] indicates substantial improvements in the classification 
rates. 

11. IMAGE DATA 

When an electromagnetic wave is reflected from an object or scene 
its polarization depends upon the polarization of the incident wave 
and the structure of the reflecting objects [l]. Thus, the polarization 
properties of a radar signal may be used to enhance discrimination 
among different terrains. Furthermore, by varying the polarization 
of the receiving antenna to different angles between 0" to 90" (in 
the plane transverse to the direction of propagation, for example 
if 0" is vertical polarization, 90" is horizontal polarization) the 
information extracted from a scene will be more complete. Namely, 
the polarization of the receiving antenna may be made to match that 
of the reflected wave. This is particularly useful as the polarization 
of the reflected wave can not always be predicted. Consequently, 
varying polarization angle should enhance the classification rate in 
S A R  images. This can be achieved by employing a fully polarized 
wave (polarimetric) which can be expressed as the superposition of 
two linearly orthogonally polarized components, namely horizontally 
and vertically polarized components. In such case, there is enough 
information in the Stokes matrix (or scattering matrix) to synthesize 
any polarization configuration [9]. 

In 1985, a polarimeter operating at L-band was flown on a 
NASA aircraft and recorded data from the San Francisco Bay area 
which included three major scenes: urban areas, parks, and large 
bodies of water. This data was subsequently processed and stored 
at the Jet Propulsion Laboratory (JPL). This image required a large 
storage space. As a result, the data was reduced into a compressed 
format representing the Stokes scattering matrix of this image with 
a data compression of 12.8:l. Since the compressed data was not 
quantized and could not be used on image display systems, a 
software (MULTITEST) and a quantizer were needed to convert the 
compressed data to a gray level image [9]. In this study an artificial 
neural network is used to classify the three major scenes/terrains in 
this image. 

111. PRINCIPAL COMPONENTS METHOD 

Owing to the huge amount of SAR imagery data involved it is 
necessary to apply a compression technique to reduce the volume of 
data prior to the application to neural network classifier. This provides 
data compression for both training and testing data sets, and reduces 
the dimensionality of the classifier network weight space as well. In 
addition, training and testing based on the raw data (gray level values) 
could contain many redundancies and nonessential information which 
may lead to a lengthy training process. 

The image data compression by means of PC extraction is ac- 
complished by projecting each sample block of the data along 
the directions of the individual orthonormal eigenvectors of the 
covariance matrix of the image data [7]. If the first few eigenvalues 
of the covariance matrix contain most of the signal energy, the 
dimensionality of the data can be greatly reduced without losing 
much information by only retaining those components along with the 

principal eigenvectors. In addition to its optimality in data reduction, 
which is not shared by other feature extraction schemes, it provides 
salient features of the data that are decorrelated. This property is 
ideally suited for classification purposes as these decorrelated features 
or components can be used to train the classifier effectively. 

The conventional approach for PC extraction involves the compu- 
tation of the input data covariance matrix and then the application 
of a diagonalization procedure to extract the eigenvalues and the 
corresponding eigenvectors [7]. For large data sets, the dimensions of 
the covariance matrix grow significantly large hence making its com- 
putation and manipulation practically inefficient and inaccurate due to 
truncationhound-off errors. In addition, all the eigenvalues and their 
corresponding eigenvectors have to be evaluated even though only the 
eigenvectors which correspond to the most significant eigenvalues are 
used in the data transformation process. These deficiencies make the 
conventional scheme inefficient for real-time applications. Thus, to 
perform PC extraction efficiently, a method which evaluates the most 
significant eigenvectors of the data covariance matrix without the 
need to form this matrix is required. This can be accomplished using 
a dedicated neural network architecture trained with the constrained 
Hebbian learning rule [5], [6]. This algorithm updates the weights 
of linear neurons sequentially until all the weights converge to the 
desired eigenvectors and the outputs approach to the PC's of the data. 
This scheme is particularly useful for large size windows (blocks) 
since no covariance matrix is needed. In the following section this 
neural network-based scheme will be used for real-time PC extraction 
from S A R  images. 

A. PC Extraction Using Constrained Hebbian Learning 
Algorithm [SI, [6] 

The structure consists of an auto-association network which is 
trained directly from the data. The training is accomplished se- 
quentially for each neuron using the constrained Hebbian learning 
rule [SI, [6]. Each neuron receives a set of L = N 2  scalar input 
values z l ( t ) ,  zZ(t), 1.. , z ~ ( t ) ,  at the training sample t where the 
elements L,'S are the pixel values contained in each NXN block. 
These inputs are assumed to be the components of a stationary 
random vector process X ( t ) .  The inputs are passed through a set 
of weights wm1(t), wm2(t) ,  , w , ~ ( t )  to generate the output of 
the mth neuron, ym(t). There are K (< L output neurons, which 
upon completion of the training, extract the relevant eigenvectors of 
the data covariance matrix in their weight vectors and generate the 
associated PC's in their outputs. The input/output relation for the 
mth output neuron is given by 

Ym(t)  = Wk( t )X( t ) ,  V m E [I, K ]  (13) 

where Wm(t) and X ( t )  represent the weight and the input vectors 
respectively defined by 

X ( t )  = [z1(t) z z ( t )  . . *  

where superscript t signifies the transpositibn operation. 
To extract the first PC, the weight vector, Wl( t ) ,  associated 

with the first neuron is updated based on the constrained Hebbian 
adaptation scheme using the following general learning equation 

where y is a reasonably small positive scalar [5] and 11. . represents 
the Euclidean norm of the relevant vector. The form of the denomina- 
tor is due to the required orthonormal property of the weight vector. 
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Assuming y is tmall, (3) can be expressed as a power series in -, 

where all the higher powers of 9 have been neglected. The term 
rgl(t)X(t) in :4) represents the Hebbian increment. On the other 
hand, the difference between the updated weight and the old weight is 
r y l ( t ) [ X ( t )  - /l(t)Wl(t)], where X(t)-yl(f)lVl(f) isconsidered 
to be the effective input. The weight vector W l ( t )  tends to grow 
according to the input S ( t ) ,  but the growth is controlled by an 
internal feedback, (-yl (t)W1 ( t ) ) ,  in the neuron. Since (4) is directly 
derived from (I:), for small values of 7 ,  the weight vector is kept 
reasonably do:e to one even when the higher order terms are 
neglected. It has been shown [SI, [6] that the weight vector of the 
neuron would converge to the normalized eigenvector associated with 
the most significant eigenvalues of the data covariance matrix. In 
crder to get the second most significant eigenvector, the contribution 
cff the previously computed most significant component is subtracted 
from the data and the outcome is used to train another neuron using 
exactly the same learning equation. In principle, this is similar to 
Gram-Schmidt orthogonalization process [6]. In general, to extract 
the mth PC, asmming that all the previous m-1 neurons are trained, 
a new (mth) nearon will be trained using the following deflated input 
data 

I7-1 

L ( f )  = X(t) - c y*(f)li; ( 5 )  
L=l 

where LkZ is t i e  estimate of ith eigenvector and y , ( t )  is the corre- 
sponding outpi t after convergence is reached. Performing (l), (4), 
and ( 5 )  sequen ially, results in all the significant eigenvectors at the 
weights and P(?s at the output of the neurons. 

In addition to the significant reduction in the input data size, 
the other benefits of PC method include rotation and translation 
independence s nd data decorrelation which can improve the training 
of the neural iietwork. 

IV. NEURAL NETWORK CLASSIFIER 

The image used in our simulations is the San Francisco Bay 
(SAR image shown in Fig. 1. The goal is to train a multilayer back- 
jsropagation neural network to classify three different terrains in this 
image namely water, park and urban areas. The training data set for 
$:he neural netv ork consisted of 8 x 8 blocks of the image data chosen 
from each separate class and arranged in row-ordered form, Le., by 
stacking rows iogether to give a vector of size L = 64. Both the raw 
input vectors and the preprocessed inputs using the PC scheme were 
used. In the latter case, the size of the input vector was reduced to 
only K = 16. The input data was normalized in both cases so that the 
nodal values would not get too large during the training process. The 
architecture fo . the most parts was either a three-layer or a two-layer 
network deterriined empirically. Three output neurons were used to 
indicate three distinct classes. The desired outputs for urban, park 
and water classes were chosen to be 000, 111, and 010, respectively. 

During the raining process an input vector from each class was 
sequentially piesented to the neural networks and the weights were 
updated such that the actual outputs were as close as possible to 
the specified desired outputs in the mean squared error sense. The 
weight adjustment was performed using the gradient descent method 
in conjunctior with the error back-propagation scheme [2]. This 
process was rexated several times for all the training vectors until the 
average mean iquared error (Ah4SE) over all the training samples and 
all the output neurons reached a prescribed minimum, The necessary 
number of itei ations to reach the convergence is greatly dependent 
on the complexity of the error surface and the step size chosen for 
adaptation. 

2, MARCH 1993 5 L3 

Fig. 1. Original SAR image of San Francisco Bay (polarization 30" -30"). 

A. Training and Testing Using Raw Data 

Total of 100 training input vectors from each class were used to 
train the neural network. An appropriate network architecture con- 
sisted of 64 inputs and 27, 9 and 3 neurons in the first hidden, second 
hidden. and output layers, respectively was found empirically. Afier 
the completion of the training (1000 iterations), the generalizati" 
capability of the network was tested on a testing set consisting of 
the rest of the image data. The results are given in Table I lor 
different polarizations of the radar. Polarization of 30" -30", j'or 
instance, means that the transmitting and the receiving antennas have 
polarization angles of 30". Note that the classification rates for 0" -0" 
polarization are higher than those of 90" -90" polarization. This can 
be seen by comparison of the corresponding images where distinction 
between urban and park classes in 0"-0" polarized SAR image is 
slightly easier than that in 90"-90" polarized image. The results 
of 0"-90" polarized image, which are not included, were very low 
because the network was not capable of separating the two classes 
(urban and park). The reason being in this case the polarization loss 
factor which is proportional to the cosine of the angle between the 
respective polarization vectors is zero or in practice very small. Aj a 
result, the reflected power retrieved by the radar is very small which 
in turn implies that the information conveyed is not sufficient for 
differentiating different classes. 

B. Training and Testing Using PC Data 
In this experiment, the PC of each input vector containing 64 pixel 

values was taken and the first I< = 16 PC's were extracted using 
the neural network-based approach with the constrained Hebbian 
learning algorithm. The PC data was then presented to the neural 
network classifier. The terrain classification using both two-la yer 
and three-layer network was tested. Due to the fact that the input 
data contained independent features no improvement in classification 
rates was observed from the added computational power of the three- 
layer neural network. As a result, a two-layer network consisting of 
16 inputs, 7, and 3 neurons in the hidden and output layers was used. 
To be consistent with the training scheme in the previous section, 
1000 iterations were taken to train the network. After the training was 
completed, the generalization capability of the network was tested 
utilizing all the testing data vectors for each class. The reductior. in 
the size of the input vectors resulted in considerable reduction in the 
size of the network which in turn led to faster training process and 
slightly better generalization capability as evident from the results in 
Table I. 

To improve the performance of the overall system even further, we 
combined the outputs of the four neural networks corresponding to 



514 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 31, NO. 2, MARCH 1993 

TABLE I 
CLASSIFICATION RATES FOR VARIOUS POLARIZATIONS USING THE RAW TRAINING DATA. 

Fig. 2. Schematic diagram of the classifier using combined polarization 
architecture. 

0"-O", 30" -30°, 45"-45", and 60" -60" polarizations by another 
network which performs the decision task, as shown in Fig. 2. By 
presenting the outputs of the networks corresponding to different 
polarized images to this decision network, the classification rates can 
further be improved. In other words, the classifier "looks" at each 
8 x 8 block with different polarization angles before making a final 
decision. As was explained earlier, different polarizations emphasize 
different classes, hence resulting in bias in the decision of the 
classifier. This bias can be avoided when combined polarization are 
applied to the composite network. Combining various polarizations 
also leads to improvements in the generalization capability of the 
system when new terrains are encountered. The decision neural 
network used to combine the outputs of the different classifiers 
consisted of 12 inputs, 8, 5, and 3 neurons in the first hidden, 
second hidden and output layers, respectively. Using -this scheme 
the classification rates were improved to 98.7%, 96.1%, and 100% 
for urban, park, and water areas, respectively. 

To generate the color coded SAR image, a moving window of 
size 8 x 8 was swept across the entire image. The PC's were then 
extracted from each window and fed to the trained network. Each one 
of the three classes was assigned a pixel value. Therefore, the output 
of the network was one of these three assigned pixel values. As the 
window moved across the image, the output of the neural network 
was assigned to the four pixels in the center of the block. This was to 
speed up the classification procedure since the window was shifted 
by two pixels at a time instead of only one. The other reason for 
assigning four pixels at a time is to avoid small variations within a 
class (e.g., swimming pools in urban areas and small buildings in 
park areas). The color-coded image using the neural network-based 
IU transform IS shown in Fig. 3 (for polarization 30"-30"). This 
image which consists of only three gray levels illustrates the three 
distinct classes. 

Fig. 3. Color coded SAR image (polarization 30' -30"). 

v. CONCLUSIONS AND DISCUSSIONS 

Based upon the results of previous section, the following ob- 
servations can be made. When the raw data was used as inputs 
to the neural network, a relatively large three-layer network was 
needed to perform the classification task. However, when the PC 
data was used, the size of the network reduced to a two-layer 
(16-7-3) as a consequence of energy compaction property of this 
method. By having smaller neural networks, the convergence time 
for updating the weights was significantly reduced. Furthermore, 
the classification rates of the network when PC method was used 
showed to be higher than when no preprocessing (raw data) was 
employed. This improvement is the result of the ability of PC method 
to extract the uncorrelated components of the data. Comparison 
between the classification rates achieved in this work and those 
of [8] shows substantial improvements owing to the use of PC 
scheme and different polarization images. Classification rates were 
further improved when a combined multipolarization network was 
used. 

In conclusion, the results in this paper indicate that neural networks 
indeed perform very well when used to classify different terrains in 
SAR images. The major advantage of neural network classifiers ocer 
the conventional statistical pattem classification/recognition schemes 
is that no statistical assumption about the distribution of SAR data is 
needed as they are nonparametric in nature and can leam the under- 
lying distribution of the data during the training process. In addition, 
unlike the conventional statistical classifiers [2], they can closely 
capture the signal distributions generated by nonlinear and/or non- 
Gaussian processes. Neural networks generally offer considerable 
improvements in classification rates in comparison to the conventional 
statistical methods. It is shown in this paper that this improvement 
in the performance is particularly substantial when these networks 
are used in conjunction with a preprocessing scheme such as the 
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P(3 method. Finitlly, the generalization capability of these networks 
make them ideal for pattern classificationirecognition under varying 
environments. 
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The S A B L E  System: Automated Archive, 
Catalog, Browse and Distribution of 

Satellite Data in Near-Real Time 

James J. Simpson and Daniel N. Harkins 

Abslract-Hi!,torically, locating and browsing satellite data has been 
a cumbersome and expensive process. This has impeded the efficient 
and effective use of satellite data in the geosciences. SSABLE is a new 
xnteractive tool for the archive, browse, order, and distribution of satellite 
date based upori X Window, high bandwidth networks, and digital image 
rendering techniques. SSABLE provides for automatically constructing 
relational database queries to archived image datasets based on time, 
data, geographical location, and other selection criteria. SSABLE also 
provides a visual representation of the selected archived data for viewing 
on the user’s X rerminal. SSABLE is a near real-time system; for example, 
data are added to SSABLE’s database within 10 min after capture. 
SSABLE is network and machine independent; it will run identically on 
any machine which satisfies the following three requirements: 1) has a bit- 
mapped displaj (monochrome or greater); 2) is running the X Window 
system; and 3) lis on a network directly reachable by the SSABLE system. 
SSABLE has been evaluated at over 100 international sites. Network 
response time in the United States and Canada varies between 4 and 7 s 
for browse image updates; reported transmission times to Europe and 
Australia typically are 20-25 s. 
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I. INTRODUCTION 

Satellite data are large, complex data sets acquired sequentially in 
time. Sequences of images derived from these data can provide a basis 
for the detection of global change processes [2]. The construction clf 
thece sequences, in turn, benefits greatly from the use of database 
management and geographical information systems (e.g., [6], [lo]). 
Given the size and generally cumbersome nature of historical satellile 
data archives, it is imperative that efficient and effective systems for 
the archive, catalog, browse, and distribution of remotely sensed dal a 
be developed, if spacecraft data are to play a major role in G1ob.d 
Change ctudies (e.g., [2]). 

Inexpensive yet powerful UNIX-based workstations now are gen- 
erally available. They use a networkigraphical protocol called X 
Window and can be linked to satellite data centers via national net- 
works. In addition, more compact, robust archival media (e.g., DPT 
tape) now are available. Exploitation of these newer technologim 
provided the basis for the Scripps Satellite Archive and Browse for 
Localized Environments (SSABLE) system, an interactive tool flx 
the archive, browse, order, and distribution of satellite data in near 
real-time. 

11. CONCEPTUAL DESIGN OF THE SSABLE SYSTEM 

A .  Overview of Design Constraints 

The SSABLE System was designed to serve two distinct types of 
users: 1)  satellite data centers; and 2) scientific and/or operational end 
users. Data centers acquire and archive satellite data, update catalogs 
and browse files, and distribute products to a broad user communiiy. 
They also support experiments in near-real time. Generally, users 
need to efficiently search, browse, and order selected satellite scenes 
from a large database, based upon a variety of search criteria. 

Additional constraints placed on the design of SSABLE were: 
1) device independence; 2) extensibility; 3) intuitive graphical user 
interface; 4) compact storage and longevity of archival media; 
5) reduced costs; 6) on-line, data quality control; 7) on-line audit 
control of data; 8) near-real time applications support; and 
Y) inexpensive, rapid response, global access. 

Based on these criteria, tools were chosen to implement SSABIE. 
They include an open, industry standard software architecture (UNIX, 
C, X Window), a Graphical User Interface (GUI) based on )he 
OSF/Motif widget set, a Relational Database Management Systc:m 
implemented in the C programming language and the Structured 
Query Language (SQL), nonproprietary network protocols (TCP/IP), 
use of national networks (e.g., Internet), and better archival media. 

B.  Hardware Configuration 

SSABLE uses three networked workstations. The Deepdish system 
controls satellite data acquisition. It consists of a Scientific Atlanta 5 
meter steerable antenna, antenna controller, bit and frame synchroniz- 
ers and a multiple frequency receiver interfaced to a Hewlett-Packard 
HP9000/370 workstation which receives satellite data transmitted in 
either the L or S band. Data is captured using the Global Imaging 
System 9000 Data Capture software but SSABLE does not require 
a specific data capture module. After capture, SSABLE initiates the 
archive, catalog and browse generation process on Deepdish. ‘The 
Oddie system performs archive, catalog, browse file creation, and 
updating for newly acquired and historical data. Oddie also services 
all requests (e.g., browse, order, accounting) from users distributed 
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