2001

Glass transition behavior of PMMA thin films

Moses T. Kabomo
Frank D. Blum
University of Missouri--Rolla

Follow this and additional works at: http://scholarsmine.mst.edu/faculty_work

Part of the Chemistry Commons, and the Materials Science and Engineering Commons

Recommended Citation
Kabomo, Moses T. and Blum, Frank D., "Glass transition behavior of PMMA thin films" (2001). Faculty Research & Creative Works. Paper 1850.
http://scholarsmine.mst.edu/faculty_work/1850

This Article is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. For more information, please contact weaverjr@mst.edu.
GLASS TRANSITION BEHAVIOR OF PMMA THIN FILMS

Moses T. Kabomo and Frank D. Blum

Department of Chemistry and Materials Research Center
University of Missouri-Rolla
Rolla, MO 65409-0010

Introduction

In the last decade there has been an increased interest in the study of the properties of supported thin polymer films. This has been prompted by the incorporation of thin films into device applications and many other technologies. Although not without controversy, a large body of experimental work indicates departures from bulk behavior by thin films. Strong evidence from both theoretical and experimental work shows that the interaction of polymer with a substrate alters the polymer conformation and mobility. A variety of techniques has been employed to probe the mobility of thin supported polymer films. Some of these techniques indirectly measured chain mobility by inference from the glass transition temperature, T_g.

We report here the results of the study of the glass transition behavior of PMMA thin films supported on silica. By varying the adsorbed amount of PMMA samples of different molecular weights we are able to simultaneously test the effect of molecular weight and adsorbed amount on the T_g. The use of modulated differential scanning calorimetry (MDSC) allows us to probe these very thin films.

Experimental Section

Materials. Two predominantly syndiotactic poly(methyl methacrylate) (PMMA) of narrow polydispersities, purchased from Polymer Source, Inc., were used without further purification. These are denoted as; P88-MMA (M_w = 1.93 x 10^4, M_w/M_m = 1.06) and P792-MMA (M_w = 2.16 x 10^4, M_w/M_m = 1.05). Amorphous fumed silica (Cab-O-Sil M-5, Cabot Corp.), with a manufacturer specified surface area of 200 m^2/g, was dried overnight at 600 °C and stored in a dessicator before use. Toluene (analytical grade, Aldrich Corp.) was used as obtained.

Adsorption. 10 mL PMMA solutions of concentrations 5 mg/mL and 15 mg/mL were prepared for each polymer sample. Adsorption was obtained by agitating 20 mL capped glass tubes containing 300 mg of silica and the 10 mL polymer solution at room temperature for 48 hours. The resulting suspension was centrifuged and the concentration of unabsorbed polymer remaining in the supernatant was determined by gravimetric analysis. The polymer-silica gel was dried for 3 days at room temperature and then placed in vacuum at 70 °C for 24 hours.

Characterization. A TA Instrument 2920 DSC was used to measure the glass transition behavior of the bulk and silica adsorbed PMMA samples. Sample masses of about 8 - 12 mg were used. Silica was used as the reference. Two heating scans and one cooling scan were taken from 25 °C to 280 °C, at a rate of 2.5 °C/min and a modulation amplitude of 1 °C every 60 s. The sample cell was purged with N_2 gas at a flow rate of 50 mL/min during the scans. The first scan ensured that all samples were subjected to similar sample histories and the reported glass transition temperatures are based on the second scan.

Table 1. Polymer Samples of Poly(methyl methacrylate)

<table>
<thead>
<tr>
<th>Sample</th>
<th>M_w (kg/mol)</th>
<th>M_m/M_w</th>
<th>Bulk T_g (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P88-MMA</td>
<td>19.3</td>
<td>1.06</td>
<td>116</td>
</tr>
<tr>
<td>P792-MMA</td>
<td>216</td>
<td>1.05</td>
<td>133</td>
</tr>
</tbody>
</table>

Results and Discussion

The MDSC curves for the PMMA samples in bulk are shown in Figure 1. The T_g is taken as the maximum of the peak of the derivative of the reversing heat flow with respect to temperature, dC_p/dT, versus T. For conventional DSC measurements, the T_g is usually taken as the point of inflection of the transition step from the differential heat flow signal, dH/dT or Cp. By taking the derivative of the heat flow signal it becomes easier to distinguish transitions that occur only a few degrees apart. Sharper transitions, like those for bulk polymers, appear as strong peaks on the derivative curve. It has been shown that the T_g of a polymer increases with molecular weight towards an asymptotic limit as expressed by the Fox equation. This molecular weight dependence of the T_g is evident in our results.

The MDSC curves for the PMMA samples adsorbed on silica are shown in Figure 2 for the adsorbed amounts 0.8 and 1.8 mg/m^2. The curves have been shifted up on the vertical axis to aid in comparison. Both the T_g and the transition breadth for all the samples on the silica surface are increased compared to those in bulk as shown in Table 2. T_g increases in the order of 60 °C have been observed previously for ultrathin films of atactic PMMA on silica. At 0.8 mg/m^2 the MDSC curves for the adsorbed polymers exhibit maxima between 170 °C and 180 °C. However, it is clear that the low molecular weight polymer has more intensity in the higher temperature region. As the adsorbed amount is increased to 1.8 mg/m^2, the curves shift to lower temperatures.

Since the glass transition temperature can be thought of as the temperature above which polymer chains exhibit significant segmental motion, an increase in T_g at a surface suggests that the polymer matrix is confined by the solid substrate. Using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, it has been verified that PMMA adsors on silica by hydrogen bonding between the PMMA carbonyl groups and the surface silanols. These hydrogen bonds inhibit segmental motion. The broadened transition breadth is consistent with inhomogeneity in segmental motions and the different peaks can be attributed to the different fractions, each with their own T_g. The peaks at higher temperatures correspond to the more restricted fractions closer to the surface.

Table 2. Glass Transition Behavior of the PMMA Samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>Transition onset temperature (°C)</th>
<th>Transition end temperature (°C)</th>
<th>Transition Breadth (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk P88-MMA</td>
<td>110</td>
<td>123</td>
<td>13</td>
</tr>
<tr>
<td>Bulk P792-MMA</td>
<td>128</td>
<td>138</td>
<td>10</td>
</tr>
<tr>
<td>P88-MMA-Si (0.8)</td>
<td>131</td>
<td>193</td>
<td>62</td>
</tr>
<tr>
<td>P792-MMA-Si (0.8)</td>
<td>132</td>
<td>193</td>
<td>61</td>
</tr>
<tr>
<td>P88-MMA-Si (1.8)</td>
<td>148</td>
<td>208</td>
<td>60</td>
</tr>
<tr>
<td>P792-MMA-Si(1.8)</td>
<td>145</td>
<td>202</td>
<td>57</td>
</tr>
</tbody>
</table>

These findings are consistent with previous studies on the segmental dynamics of bulk and adsorbed poly(methyl acrylate)-d_3 (PMMA-d_3) by deuterium solid-state nuclear magnetic resonance (NMR) spectroscopy. The
deuterated methyl group was used to demonstrate that the segmental mobility of the adsorbed PMA-d$_3$ was more restricted and heterogeneous compared to that of the bulk sample. The mobility decreased as the adsorbed amount decreased. In addition, the observed behavior was consistent with an interface that was graded in terms of mobility. The regions of higher mobility (a small fraction) were associated with the air-polymer interface while that of more restricted mobility was assigned to the polymer-silica interface. We believe that the broadness of the thermal transitions observed here are indicative of the graded interface.

Finally, the results of this work are also consistent with, though as not obvious as, prior NMR studies on PMA-d$_3$.

Conclusions

We have used modulated differential scanning calorimetry to study the glass transition behavior of PMMA thin films on silica. The glass transition temperatures of all the adsorbed polymers were higher than bulk. The surface glass transition temperatures increased with decreasing adsorbed amount. We suggest that the difference in the glass transition temperatures result from differences in chain configuration on the surface.

Acknowledgements. The authors acknowledge the National Science Foundation for financial support of this work.

Conclusions

We have used modulated differential scanning calorimetry to study the glass transition behavior of PMMA thin films on silica. The glass transition temperatures of all the adsorbed polymers were higher than bulk. The surface glass transition temperatures increased with decreasing adsorbed amount. We suggest that the difference in the glass transition temperatures result from differences in chain configuration on the surface.

Acknowledgements. The authors acknowledge the National Science Foundation for financial support of this work.

References