A limitation to the use of a constructive approach in the stability analysis of fixed-point digital controllers

Kelvin T. Erickson
Missouri University of Science and Technology, kte@mst.edu

Follow this and additional works at: http://scholarsmine.mst.edu/faculty_work
Part of the Electrical and Computer Engineering Commons

Recommended Citation
http://scholarsmine.mst.edu/faculty_work/1683

This Article is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. For more information, please contact weaverjr@mst.edu.
A Limitation to the Use of a Constructive Approach in the Stability Analysis of Fixed-Point Digital Controllers

KELVIN T. ERICKSON

Abstract—A limitation to the application of a constructive algorithm to the stability analysis of fixed-point digital controllers is demonstrated by an example. The particular system analyzed consists of a fixed-point PI digital controller regulating a first-order process.

I. INTRODUCTION

In recent papers, Brayton and Tong [1], [2] established some elegant results which are the basis of a constructive approach in the stability analysis of dynamical systems. This constructive algorithm has recently been applied to the stability analysis of second-order digital filters [4], discrete-time interconnected systems [8], and hybrid composite dynamical systems [9]. The constructive algorithm has also been used to analyze the stability of the recursive part of fixed-point digital controllers [5]. The results obtained by the constructive algorithm have been used to yield conditions (in the parameter plane) under which a system is globally asymptotically stable (g.a.s.), and as such, does not possess zero-input limit cycles.

This note demonstrates a limitation of the constructive algorithm when used to analyze the stability of digital controllers having integral action. The particular system to be analyzed consists of a fixed-point PI controller regulating a first-order process. The remainder of this note is organized as follows. The digital control system to be analyzed is explained in Section II. In Section III, we analyze the stability of the system with a linear digital controller (i.e., no quantization nonlinearities). The stability of the system with fixed-point truncation quantization nonlinearities is examined using the constructive algorithm in Section IV. For comparison purposes, the same system is analyzed in Section V using the Jury–Lee absolute stability criterion [7].

II. SYSTEM TO BE ANALYZED

The system to be analyzed (Fig. 1) consists of a fixed point digital PI controller \(D(z) \) controlling a simple first-order process having no deadtime

\[
G(s) = \frac{1}{s+1}.
\]

In order to analyze the stability of this system, the discrete equivalent of the zero-order hold and process is obtained as [3]

\[
G(z) = (1-z^{-1})Z \begin{bmatrix} G(s) \end{bmatrix} = \frac{(1-e^{-T})z^{-1}}{1-e^{-T}z^{-1}} \tag{1}
\]

where \(T \) is the sample period of the controller.

The digital PI controller is the incremental form of the PI digital controller [3] and has a discrete transfer function of

\[
D(z) = P \frac{(1+Tz^{-1})}{1-z^{-1}} \tag{2}
\]

where \(P \) is the proportional constant, \(I \) is the inverse of the integral time constant in 1/s, and \(T \) is the sample period of the digital controller. The transfer function \(D(z) \) is obtained by substituting the discrete equivalent of backward rectangular integration in the continuous PI controller.

Manuscript received October 23, 1986; revised February 2, 1987.

The author is with the Department of Electrical Engineering, University of Missouri-Rolla, Rolla, MO 65401.

IEEE Log Number 8714848.

In practical digital controllers, the representation of signals must necessarily have finite precision. The finite precision, or wordlength, is a consequence of the conversion of the analog process signals to a fixed- or floating-point number and of the storage of these signals in registers which have finite wordlength. Multiplication and addition performed in the controller generally lead to an increase in the wordlength required for the result of the operation. A wordlength reduction may be necessary to prevent the wordlength of the signals from increasing indefinitely.

In this note, we assume that the digital controller uses fixed-point arithmetic. In fixed-point arithmetic, each number is represented by a sign bit and a magnitude. Thus, the magnitude of any number is represented by a string of binary digits of fixed length \(B \). When two \(B \)-bit numbers are multiplied, the result is a \(2B \)-bit number. A quantization nonlinearity is produced when the \(2B \)-bit number is reduced in wordlength to \(B \) bits. Addition also poses a problem when the sum of two numbers falls outside the representable range. An overflow nonlinearity results when this number is modified so that it falls back within the representable range. In this note we assume that no overflow nonlinearities are present and that only magnitude truncation quantization occurs. In magnitude truncation quantization, the least significant bits of the number are discarded whenever the wordlength needs reduction. The nonlinear characteristic of this quantizer is shown in Fig. 2. Here, \(q = 2^{-B+1} \) is the quantization level.

For the purposes of stability analysis, the magnitude truncation quantization nonlinearity is viewed in this note as belonging to a sector \([k_1, k_2]\) where

\[
k_1 \sigma^2 \leq \sigma f(\sigma) \leq k_2 \sigma^2 \quad \text{for all } \sigma \in \mathbb{R}.
\]

The function \(f(\cdot) \) represents the nonlinearity and the only restrictions on \(k_1 \) and \(k_2 \) are \(-\infty < k_1 \leq k_2 < \infty \). A general sector \([k_1, k_2]\) is represented by the hatched region of Fig. 3. Under this assumption, the truncation quantization nonlinearity in Fig. 2 belongs to the sector \([0, 1]\).

The nonlinear digital system to be analyzed for stability is shown in Fig. 4. Within the controller, calculations are carried out in double precision. Quantizer \(Q_1 \) in Fig. 4 represents the reduction of the internal numbers to single precision as the final step. The A/D converter is represented by quantizer \(Q_2 \).

As is customary in the stability analysis of systems, the equilibrium of the system is assumed to be at the origin. If the equilibrium of the system is not at the origin, then we assume that it is translated so the equilibrium is at the origin.

III. LINEAR SYSTEM STABILITY

The stability of the linear system \((Q_1(\cdot) = Q_2(\cdot) = 1) \) can be analyzed using the Jury stability test [6, sect. 3.9]. The closed-loop transfer function of the linear system is

\[
Y(z) = \frac{D(z)G(z)}{R(z)} = \frac{D(z)G(z)}{1+D(z)G(z)} \tag{3}
\]

A necessary and sufficient condition for the linear system to be stable is that all poles of (3) lie within the unit circle. Using (1) and (2), the poles of (3) are the zeros of the polynomial

\[
z^2 + [P(1+T)(1-e^{-T}) - 1 - e^{-T}]z + [e^{-T} - P(1-e^{-T})].
\]

Using the Jury stability test [6] on the polynomial (4), the linear system

![Digital control system](image-url)
then we can rewrite (6) equivalently as (asymptotically stable). In the following, we give a brief summary of the results of Brayton and Tong. Brayton and Tong as asymptotic stability of the equilibrium $x = 0$ of dynamical systems described by ordinary differential equations and also by difference equations. The basic philosophy of their method is to determine the stability of an appropriate set of matrices associated with the system in question and then deduce the stability of the equilibrium of the given system. To utilize this algorithm, consider systems of the form

$$x(k + 1) = g[x(k)].$$

We call a set A of $n \times n$ real matrices stable if for every neighborhood of the origin $U \subset R^n$, there exists another neighborhood of the origin $V \subset R^n$ such that for every $M \in A$, we have $MV \subseteq U$. Here, A' denotes the multiplicative semigroup generated by a set A and $MV = \{u \in R^n : u = Mu, v \in V\}$. In [1] it is shown that if a set A of $n \times n$ matrices is stable, then there exists a vector norm $\| \cdot \|$ such that $\|MX\| \leq \|x\|$ for all $M \in A$ and $x \in R^n$. The vector norm $\| \cdot \|$ defines a positive semi-definite Lyapunov function for A, i.e., it defines a function v with the property

$$v(Mx) \leq v(x), \quad \text{for all } M \in A \text{ and } x \in R^n.$$

Next, we call a set of matrices A asymptotically stable if there exists a number $\rho > 1$ such that ρA is stable. The set ρA is obtained by multiplying every member of A by ρ. Thus, if ρA is stable, then there exists a vector norm $\| \cdot \|$ such that $\|MX\| < \|\rho MX\|$ for all $M \in A$ and $x \in R^n$. The vector norm $\| \cdot \|$ defines a positive definite Lyapunov function with the property

$$v(Mx) < v(x), \quad \text{for all } M \in A \text{ and } x \in R^n.$$

Thus, given system (7), if M is asymptotically stable, then the system (7) is globally asymptotically stable. However, if the set M is unstable, then we can draw no conclusion about the stability of (7).

The set of matrices M given in (7) consists in general of an infinite number of matrices. However, in [1] it is shown that we need only work with the extreme matrices of the set $E(M)$ to get an indication of the stability of M. Thus, in those cases where $E(M)$ is finite, we can use it to analyze the stability of the infinite set M.

B. Application

With the digital controller (2) implemented as a direct form I structure [10], the nonlinear system to be analyzed by the Brayton–Tong method is shown in Fig. 6. The state equations of the system are

$$x_1(k + 1) = -Q_1[g_1x_1(k)]$$
$$x_1(k + 1) = d_1x_1(k) + x_2(k) - d_0Q_1[g_1x_1(k)]$$
$$x_2(k + 1) = g_2x_2(k) + Q_1[d_1x_1(k) + x_2(k) - d_0Q_1[g_1x_1(k)]]$$

where $d_0 = P(1 + 1T)$, $d_1 = -P_1$, $g_1 = 1 - e^{-T}$, and $g_2 = e^{-T}$. When the state equations (8) are written in the form of (6),

$$M(x(k)) = \begin{bmatrix} 0 & 0 & -g_1\Phi_1(x) \\ d_1 & 1 & -d_0\Phi_1(x) \\ d_0\Phi_1(x) & \Phi_1(x) & 1 - d_2g_1\Phi_1(x) \end{bmatrix}$$

where

$$\Phi_1 = \frac{Q_1[d_1x_1 + x_2 - d_0Q_1[g_1x_1]]}{d_1x_1 + x_2 - d_0Q_1[g_1x_1]}$$

$$\Phi_2 = \frac{Q_1[g_1x_1]}{g_1x_1}.$$

When the $M(x(k))$ given by (9) and (10) is multiplied by $x(k) = [x_1(k) x_2(k) x_3(k)]^T$, the state equations (8) are obtained.

Fig. 2. Magnitude truncation quantization nonlinearity characteristic.

Fig. 3. A general sector $[k_i k_j]$.

Fig. 4. Nonlinear digital control system.

Fig. 5. Part of region where linear digital control system is g.a.s.
Since the quantization nonlinearities belong to a sector, the functions \(\Phi_i(x) \) and \(\Phi_2(x) \) are bounded by the constants

\[
\alpha_i \leq \Phi_i(x) \leq \alpha_2
\]

\[
\beta_i \leq \Phi_2(x) \leq \beta_2
\]

where \(\alpha_1 = \beta_1 = 0 \) and \(\alpha_2 = \beta_2 = 1 \). The function \(\Phi_i(x) \Phi_2(x) \) is also bounded by constants

\[
\gamma_1 \leq \Phi_i(x) \Phi_2(x) \leq \gamma_2
\]

where \(\gamma_1 = 0 \) and \(\gamma_2 = 1 \). The extreme matrices of the set \(M \) are

\[
M = \begin{bmatrix}
0 & 0 & -\delta_{0i} \\
\delta_{1i} & 1 & -\delta_{1j} \\
\delta_{2i} & \alpha_i & \beta_1 - \delta_{3j} \alpha_1
\end{bmatrix}, i, j, k = 1, 2
\]

(11)

where \(\alpha_1 = \beta_1 = \gamma_1 = 0 \) and \(\alpha_2 = \beta_2 = \gamma_2 = 1 \).

When the set of extreme matrices (11) is evaluated for asymptotic stability, the constructive algorithm fails to determine any region in the parameter plane where the nonlinear system is globally asymptotically stable. This result is apparent when the eigenvalues are determined for the given system.

The function \(H(z) = 2K^{-1} + G(z) + G^*(z) > 0 \), for all \(|z| = 1 \)

where \(G^*(z) \) denotes the conjugate transpose of \(G(z) \) and "greater than" signifies that the matrix is positive definite.

For the given system, \(k_0 = 1 \) and the matrix \(G(z) \) is

\[
G(z) = \begin{bmatrix}
0 & -D(z) \\
G(z) & 0
\end{bmatrix}
\]

The corresponding region in the parameter plane where the system is globally asymptotically stable is shown as the hatched region in Fig. 8. This region is small compared to the region where the linear system is stable (Fig. 5). Nevertheless, the Jury–Lee criterion obtains a result for this problem.

VI. CONCLUSION

Using a simple example, it has been shown that the Brayton-Tong constructive algorithm cannot be used in the stability analysis of a digital control system with a PI controller. When the Jury–Lee criterion is applied to the same system, controller parameters can be found that guarantee the global asymptotic stability of the system. However, it is not known if this result extends to all digital controllers having an integrator. If this result extends to all digital controllers, then this limitation of the constructive algorithm may be serious, since many industrially-useful controllers need integral action to adequately handle persistent process disturbances. However, the constructive algorithm still offers an effective and general approach for the stability analysis of fixed-point digital filters [4], [8].

REFERENCES

A General Approach for Constructing the Limit Cycle Loci of Multiple-Nonlinearity Systems

H. C. CHANG, C. T. PAN, C. L. HUANG, AND C. C. WEI

Abstract—This note presents a widely convergent algorithm for finding a limit cycle of systems with multiple nonlinearities. A systematic approach is proposed for constructing the limit cycle loci on the parameter planes. The merits of this approach lie in its simplicity, a limit cycle of systems with multiple nonlinearities. For example, Taylor [3] used a division technique, Hull [4] applied a corrector technique, Abel [5] adopted a predictor-corrector technique, while Aderibigbe et al. [6] presented a new approach based on harmonic balance or Galerkin’s method. Although these methods have been applied successfully to some systems with multiple nonlinearities, they require lengthy and involved calculations of rather high dimension. Other, such as Galerkin’s [7], [8] have been proposed. A limitation of some of these approaches is that they generally relate to a certain class of systems. In addition, there are many works [9]-[11] dealing with qualitative analysis of nonlinear systems. This approach merits attention by providing a rigorous mathematical justification for using describing functions, and hence will make the designer more confident when using the describing function method to analyze complicated nonlinear systems. However, these general mathematical methods are usually difficult to apply to any but a certain specific configuration. On the other hand, it is frequently desired to investigate the effects of parameter changes on the limit cycle. This poses an even more complicated problem. In view of this, this note presents a systematic approach for plotting limit cycle loci on parameter planes so that one can have a clearer picture about the parameter influences. Significantly, the proposed method can handle any number of general nonlinearities and is applicable to most nonlinear configurations frequently encountered in practice. Besides, stability of the limit cycle can be determined without much additional effort by using the proposed method.

I. INTRODUCTION

The sinusoidal input describing function (SIDF) techniques have been used quite successfully to study limit cycles in nonlinear systems with a single nonlinearity [1], [2]. Recently, many new approaches [3]-[6] have been presented for predicting limit cycles of systems with multiple nonlinearities. For example, Taylor [3] used a division technique, Hull [4] applied a corrector technique, Abel [5] adopted a predictor-corrector technique, while Aderibigbe et al. [6] presented a new approach based on harmonic balance or Galerkin’s method. Although these methods have been applied successfully to some systems with multiple nonlinearities, they require lengthy and involved calculations of rather high dimension. Other, such as Galerkin’s [7], [8] have been proposed. A limitation of some of these approaches is that they generally relate to a certain class of systems. In addition, there are many works [9]-[11] dealing with qualitative analysis of nonlinear systems. This approach merits attention by providing a rigorous mathematical justification for using describing functions, and hence will make the designer more confident when using the describing function method to analyze complicated nonlinear systems. However, these general mathematical methods are usually difficult to apply to any but a certain specific configuration. On the other hand, it is frequently desired to investigate the effects of parameter changes on the limit cycle. This poses an even more complicated problem. In view of this, this note presents a systematic approach for plotting limit cycle loci on parameter planes so that one can have a clearer picture about the parameter influences. Significantly, the proposed method can handle any number of general nonlinearities and is applicable to most nonlinear configurations frequently encountered in practice. Besides, stability of the limit cycle can be determined without much additional effort by using the proposed method.

This note presents a widely convergent algorithm for finding a limit cycle of systems with multiple nonlinearities. A systematic approach is proposed for constructing the limit cycle loci on the parameter planes. The merits of this approach lie in its simplicity, a limit cycle of systems with multiple nonlinearities. For example, Taylor [3] used a division technique, Hull [4] applied a corrector technique, Abel [5] adopted a predictor-corrector technique, while Aderibigbe et al. [6] presented a new approach based on harmonic balance or Galerkin’s method. Although these methods have been applied successfully to some systems with multiple nonlinearities, they require lengthy and involved calculations of rather high dimension. Other, such as Galerkin’s [7], [8] have been proposed. A limitation of some of these approaches is that they generally relate to a certain class of systems. In addition, there are many works [9]-[11] dealing with qualitative analysis of nonlinear systems. This approach merits attention by providing a rigorous mathematical justification for using describing functions, and hence will make the designer more confident when using the describing function method to analyze complicated nonlinear systems. However, these general mathematical methods are usually difficult to apply to any but a certain specific configuration. On the other hand, it is frequently desired to investigate the effects of parameter changes on the limit cycle. This poses an even more complicated problem. In view of this, this note presents a systematic approach for plotting limit cycle loci on parameter planes so that one can have a clearer picture about the parameter influences. Significantly, the proposed method can handle any number of general nonlinearities and is applicable to most nonlinear configurations frequently encountered in practice. Besides, stability of the limit cycle can be determined without much additional effort by using the proposed method.

Manuscript received August 1, 1986; revised January 5, 1987 and April 23, 1987. H. C. Chang, C. L. Huang, and C. C. Wei are with the Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C. C. T. Pan is with the Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan, R.O.C.