FDTD data extrapolation using multilayer perceptron (MLP)

H. Goksu

David Pommerenke
Missouri University of Science and Technology, davidjp@mst.edu

Donald C. Wunsch
Missouri University of Science and Technology, dwunsch@mst.edu

Follow this and additional works at: http://scholarsmine.mst.edu/faculty_work

Part of the Electrical and Computer Engineering Commons

Recommended Citation
Goksu, H.; Pommerenke, David; and Wunsch, Donald C., "FDTD data extrapolation using multilayer perceptron (MLP)" (2003). Faculty Research & Creative Works. Paper 1675.
http://scholarsmine.mst.edu/faculty_work/1675

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. For more information, please contact weaverjr@mst.edu.
Abstract
This work compares MLP with the Matrix Pencil Method, a linear eigenanalysis-based extrapolator, in terms of their effectiveness in Finite Difference Time Domain (FDTD) data extrapolation. Matrix Pencil Method considers the signal as superposed complex exponentials while MLP considers each time step to be a nonlinear function of previous time steps.

Keywords
FDTD, neural networks, multilayer perceptron, EMC, data extrapolation, prediction, time series, complex exponentials

INTRODUCTION
FDTD simulations, which are widely used for simulating EMC characteristics of systems, are computationally very expensive. In order to boost the efficiency of the algorithm by stopping the simulation after a sufficient number of time steps and having an extrapolator predict the rest of the signal, we compare an MLP with a linear eigenanalysis predictor.

Looking from the frequency analytic point of view, all prediction attempts will have the restriction of confining the bandwidth of the frequency content of the predicted signal to that of the truncated signal that is used for reconstruction. So the prediction will lead to a loss in frequency information while shortening computational time unless the desired frequency range is already contained in the truncated signal.

FDTD IN ELECTROMAGNETIC COMPATIBILITY (EMC) SIMULATIONS
FDTD is a common method where impulse response of an electromagnetic system is simulated in time domain [3]. Output of the simulation is transformed to frequency domain, because measuring instruments work in this domain, and the behavior of the systems depends highly on frequency due to the resonant structures in systems.

As an example, shielding properties of enclosures can be simulated by their impulse response. Apparently, a perfect impulse is equivalent to flat white noise and shielding of an enclosure depends on the degree of attenuation it performs for different frequencies. The method is to induce an impulse from inside the enclosure and measure the attenuated signal outside.

If the geometry of the system to be tested is fully known, propagation of the impulse through the system can be simulated by FDTD through discretized Maxwell equations by computing the electric and magnetic fields, one following another, through two consecutive grids. As the system under test gets bigger, the simulation becomes computationally unaffordable. Namely, the shielding property of an enclosure might need to be simulated for as long as several weeks.

We know that FDTD simulations are not efficient but they are one of the best simulation tools at hand. The waste of resources in an FDTD simulation can be understood by considering the fact that two very different geometries having the same volume but very different complexity levels would require the same computational complexity as long as they have resonant structures. FDTD does not use the inherent symmetries in the systems, so the waste of resources is obvious.

Reducing the computational cost of such simulations would make more simulations possible, hence result in more creative and better designs. If we consider that most time domain simulations work in the same principle, any attempt for such an improvement may help improve the whole group.

An improvement model to FDTD is capturing the patterns inherent in the output time domain signal, using an extrapolator, from its partial results. One such extrapolator reported so far is a NN model. This work is the comparison of an FIR network with a linear ARMA extrapolator [2]. Another example is a study which considers extrapolation by Matrix Pencil Method assuming that the signal can be represented by superposed complex exponentials [4]. NN models perform well similar to their success in system identification [1].
APPLICATION
Current work is the comparison of a Multilayer Perceptron (MLP), a non-conventional nonlinear method, with that of the Matrix Pencil method, a linear method, in terms of their ability to predict rest of a truncated artificial signal. The artificial signal used is constructed by superposing a number of arbitrary decaying sinusoidals which is known to be similar to FDTD signals in nature.

Figure 1: Extrapolation by Matrix Pencil Method where the signal is truncated at 16% of the total signal. Original signal is represented by solid and predicted signal is represented by dashed lines, vertical line shows the truncation point.

MLP is a feedforward neural network (NN) which is proven to be quite successful for its system identification and time series prediction ability [1].

Figure 2: Extrapolation by Multilayer Perceptron (MLP) where the signal is truncated at 16% of the total signal. Original signal is represented by solid and predicted signal is represented by dashed lines, vertical line shows the truncation point.

The MLP architecture used in this study consists of an input layer of 6 neurons fed by the delayed time signal, one hidden layer of 8 neurons and a one-neuron output layer aimed to give the predicted next time step following the window of delayed input time series. While the hidden layer neurons have tangential sigmoid transfer functions, the output layer has linear transfer function. The network is adaptively trained on the truncated signal by Levenberg Marquardt backpropagation. Then it starts constructing the rest of the signal by accumulating one step predictions.

Figure 3: Extrapolation by Matrix Pencil Method where the signal is truncated at 32% of the total signal. Original signal is represented by solid and predicted signal is represented by dashed lines, vertical line shows the truncation point.

Figure 4: Extrapolation by Multilayer Perceptron (MLP) where the signal is truncated at 32% of the total signal. Original signal is represented by solid and predicted signal is represented by dashed lines, vertical line shows the truncation point.

Table 1. Comparison of prediction errors (% RMS)

<table>
<thead>
<tr>
<th>Method</th>
<th>Truncation Point</th>
<th>16%</th>
<th>32%</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLP</td>
<td>4.02%</td>
<td>545.58%</td>
<td></td>
</tr>
<tr>
<td>Matrix Pencil Method</td>
<td>0.05%</td>
<td>1.12%</td>
<td></td>
</tr>
</tbody>
</table>

The Matrix Pencil Method is a method that allows system identification by means of the early time response of the system itself to an impulse [4]. The data obtained from this
The prediction results for two methods for two different truncation lengths can be seen in Figures 1 through 4. Figure 1 and 2 gives the results of extrapolation using the first 16% of the total signal by MLP and Matrix Pencil methods. Figure 3 and 4 gives the results of extrapolation using the first 32% of the total signal. It is clear that MLP is able to predict from a shorter truncated signal (16% of the total signal) which means more savings in terms of FDTD computation. For longer truncations (32% of the total signal) both methods perform well but MLP is still more accurate. Percentage RMS prediction errors of the two methods are given in Table 1.

CONCLUSIONS
This overall work shows that MLP is a potentially convenient adaptive extrapolator for FDTD-type signals. Further research is proposed for making the input size and architecture of the MLP to be adaptive to different time step sensitivities and signal types.

ACKNOWLEDGEMENTS
We gratefully acknowledge the financial support received from National Science Foundation and M. K. Finley Endowment for this research.

REFERENCES