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Fully Evolvable Optimal Neurofuzzy Controller
Using Adaptive Critic Designs

Salman Mohagheghi, Member, IEEE, Ganesh K. Venayagamoorthy, Senior Member, IEEE,
and Ronald G. Harley, Fellow, IEEE

Abstract—A near-optimal neurofuzzy external controller is de-
signed in this paper for a static compensator (STATCOM) in a
multimachine power system. The controller provides an auxiliary
reference signal for the STATCOM in such a way that it improves
the damping of the rotor speed deviations of its neighboring gener-
ators. A zero-order Takagi–Sugeno fuzzy rule base constitutes the
core of the controller. A heuristic dynamic programming (HDP)
based approach is used to further train the controller and enable
it to provide nonlinear near-optimal control at different operating
conditions of the power system. Based on the connectionist systems
theory, the parameters of the neurofuzzy controller, including the
membership functions, undergo training. Simulation results are
provided that compare the performance of the neurofuzzy con-
troller with and without updating the fuzzy set parameters. Simu-
lation results indicate that updating the membership functions can
noticeably improve the performance of the controller and reduce
the size of the STATCOM, which leads to lower capital investment.

Index Terms—Adaptive critic designs, connectionist systems the-
ory, evolving fuzzy systems, neurofuzzy systems, optimal control.

I. INTRODUCTION

FUZZY SYSTEMS have been used in many engineering ap-
plications. These heuristic based intelligent techniques can

effectively perform as nonlinear identifiers and/or controllers in
the presence of noise and uncertainties, and provide partially
robust solutions [1]. Fuzzy systems have been extensively used
in power system applications for pattern recognition, identifi-
cation, modeling, and control [2], [3]. Based on the type of the
crisp input applied to the controller (error, derivative of the er-
ror, or the integral of the error), the fuzzy controller can perform
as a nonlinear proportional, derivative, or integrator controller.
In general, fuzzy controllers can be viewed as nonlinear gain
scheduling controllers. They provide a nonlinear mapping from
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a set of crisp inputs to a set of fuzzy values using fuzzification
techniques, and back to a set of crisp outputs using deffuzifica-
tion techniques [4].

Fuzzification is a very important part of the fuzzy control pro-
cess. Different standard or nonstandard functions, called fuzzi-
fiers, can be used for mapping crisp values to fuzzy values.
Standard fuzzifiers such as the singleton and nonsingleton, e.g.,
Gaussian and triangular, are the most commonly used func-
tions. However, in general, there does not exist a systematic
way for selecting the proper membership functions for a given
problem.

Due to simplicity, most researchers tend to design the in-
put/output fuzzy sets using the equal-span standard functions.
However, these functions do not necessarily provide the opti-
mum solution for all problems. Instead, a priori knowledge of
the plant to be controlled and its dynamics might lead to differ-
ent standard or nonstandard fuzzy membership functions with
various physical shapes in order to design a more efficient fuzzy
logic controller.

Clearly, changing any of the parameters associated with a
fuzzy controller can change its performance. However, it has
been shown that altering the membership functions has a dom-
inant effect [5]. Many researchers have tried to address this
issue by applying partitioning techniques for the input/output
space [6], [7]. Others have proposed methods to take the uncer-
tainty of the membership functions into account [8], [9].

There have also been several attempts to update the fuzzy rule
base in order to be able to respond to the changes in the system
dynamics. Angelov [10] proposed evolving fuzzy-rule-based
models by using the information from the new data samples. In
this approach, the rule base is modified by adding new rules if
significant information exists in the new data collected that had
not been covered before [10], [11].

However, it has also been shown in the literature that the
connectionist systems theory can be applied to adaptively adjust
the parameters of a fuzzy controller, including its membership
functions, while the controller is operating in the system [6],
[12]–[15]. This approach has been the most common technique
for nonlinear control applications using evolvable fuzzy systems
[16]–[19]. Most of these evolvable fuzzy control schemes in the
literature use an adaptive scheme in which the parameters of
the controller are adjusted, based on the value of the error at
one time step ahead. Clearly, this scheme suffers from being
“short-sighted,” since the parameters that minimize the error at
one step ahead do not necessarily lead to optimal performance
over the long run [20]. Indeed, these adaptive schemes might at
times cause inappropriate control effort by the controller.

1063-6706/$25.00 © 2008 IEEE
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The focus of this paper is on the design of a near-optimal
neural-network-based fuzzy (neurofuzzy) controller by opti-
mally adjusting its antecedent membership functions and conse-
quent (output) parameters. The adaptive critic designs (ACDs)
theory, based on combined concepts of approximate dynamic
programming (ADP) and reinforcement learning, is used, which
can provide a near-optimal control policy over an infinite hori-
zon of a problem in the presence of noise and uncertainties [21].
The novel approach proposed in this paper allows for designing
a fully evolvable near-optimal fuzzy controller without having
access to any mathematical model of the system, with no prior
information on the system dynamics, and without any large
amount of offline data.

The proposed controller in this paper is designed for super-
visory level control of a static compensator (STATCOM) in a
multimachine power system. Nevertheless, the design procedure
presented here is not problem-dependent and can be applied to
various control applications. This specific control application is
intentionally selected in this paper to show the superiority of
evolvable fuzzy controllers, since the selected system portrays
a nonlinear nonstationary system with parameter uncertainties
and fast changing dynamics whose mathematical model cannot
be obtained easily. In such an application, linear controllers lose
their efficiency due to the ever-changing nature of the system.
Designing nonlinear controllers, on the other hand, is not easy
due to the lack of an analytical model available for the sys-
tem. Several researchers have proposed fuzzy logic [22]–[24],
neural networks [25]–[27], or neurofuzzy systems [28] for de-
signing controllers for the STATCOM. Many of these adaptive
techniques use only the error at one time step ahead that, as
mentioned before, makes them short-sighted, causing them to
generate excessive control effort. Optimal control techniques
can be employed to solve this problem [20]. The major advan-
tage of the optimal fuzzy-logic-based controller proposed in this
study over the similar neural-networks-based approaches is its
“white box” nature. As opposed to a neurocontroller, the rule
base of a fuzzy-logic-based controller provides a heuristic rea-
soning for controlling the plant. Hence, the design engineer has
a clear understanding of the parameters and their effects on the
system performance. In other words, similar to the analytical
approaches, the input–output relationship in a fuzzy controller
can be explained in terms of the physical rules governing the be-
havior of the system. Table I summarizes the main advantages
and disadvantages of the conventional and intelligent control
schemes for the STATCOM.

In an earlier work in [37], the authors designed a near-optimal
neurofuzzy controller for the STATCOM using partial updating
of the output parameters only. This paper extends the previous
work by applying a full updating scheme in which the antecedent
fuzzy sets are also adjusted to provide optimal control. Simu-
lation results are provided that point out the superiority of the
latter scheme.

The rest of the paper is organized as follows. Section II
summarizes some of the key concepts behind ACD-based con-
trollers. The structure of the multimachine power system and the
external control scheme for the STATCOM appear in Section III
of the paper. The structure of the proposed STATCOM neuro-

TABLE I
CONVENTIONAL AND INTELLIGENT CONTROL SCHEMES FOR A STATCOM

fuzzy external controller is explained in Section IV. Section V
provides the details of the training process required for the pro-
posed controller. Simulation results are provided in Section VI
in order to compare the effectiveness of the proposed neuro-
fuzzy external controller with and without full updating. Some
practical considerations are discussed in Section VII. Finally,
the concluding remarks are given in Section VIII.

II. ADAPTIVE CRITIC DESIGNS (ACDs)

Adaptive critic designs (ACDs) were first introduced by Wer-
bos in [38] and later in [39], and by Widrow in the early
1970s [40]. Werbos later on proposed a family of ADP de-
signs [21]. These are neural-network-based techniques capable
of optimizing a measure of utility or goal satisfaction over mul-
tiple time periods into the future, in a nonlinear environment
under conditions of noise and uncertainty.

A utility function U (t) along with an appropriate choice of
a discount factor is defined for the ACD controller. At each
time step t, the plant outputs (a set of measured variables) X(t)
are fed into the controller, which in turn generates a control
signal A(t) in such a way that it optimizes the expected value
of the utility function U over the horizon time of the problem.
This quantity is referred to as the cost-to-go function J given by
Bellman’s equation of dynamic programming [41] as follows:

J(t) =
∞∑

k=0

γkU(t + k) (1)

where γ is a discount factor, 0 < γ < 1, for infinite (k goes
to ∞) and finite (k goes to N ) horizon problems. A discount
factor of zero uses the present value of the utility function as
the optimization objective (same as minimization of the error
at one step ahead), while a discount factor of unity considers
all the future values of the utility function equally important.
An infinite horizon problem has infinite states, while when the
discount factor is less than 1, the number of future states is
no longer infinite since after a point, their contributions will
become insignificant in the value of the function J .

Fundamentally, ACD-based controllers are based on three
mathematical concepts: approximate dynamic programming,
optimal control, and reinforcement learning. It is known that
dynamic programming is the only exact technique available to
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solve the problem of optimization over time in a general non-
linear, stochastic system [41]. However, in practice, it is used
in very limited applications, due to its computational complex-
ities [42]. The ACD theory overcomes this problem by approx-
imating the cost-to-go function J(t)—thus, the name approx-
imate dynamic programming. Essentially, ACD theory creates
reinforcement learning systems by building systems that learn
to approximate the Bellman’s equation of dynamic program-
ming in (1) [20]. A critic neural network accomplishes this
task by approximating the true cost-to-go function J(t) with no
prior knowledge of the system. Moreover, it avoids the curse of
dimensionality that occurs in some cases of classical dynamic-
programming-based optimal control [41]. Clearly, the critic neu-
ral network approximates the function J(t) in an unsupervised
fashion, since the desired control trajectory is not known in
advance. The estimated cost-to-go function is then used as a
performance measure in order to reward or penalize the con-
troller.

Two major categories of the ACD family include the model-
based ACD designs, where a model of the plant to be con-
trolled is required in order to train the controller, and the
action-dependent ACD (ADACD) designs, which takes a model-
independent approach. The action-dependent heuristic dynamic
programming (ADHDP) ACD approach is chosen for the study
in this paper, which includes two different neural networks as
follows:

1) critic neural network: A neural network trained to approx-
imate the cost-to-go function J required for optimization;

2) neurofuzzy controller (action neural network): This neural
network functions as a controller and is trained to provide
the optimal control signals to the STATCOM, resulting
in minimization/maximization of the function J over the
time horizon of the problem.

In theory, if the weights of the critic network have converged
to the correct values [the values that satisfy the Bellman’s equa-
tion of optimality in (1)], then the cost-to-go function J(t) serves
as a Lyapunov function guaranteed to stabilize the overall sys-
tem if the system is controllable [20]. Furthermore, if the action
network is sufficiently trained using the signals provided by the
critic network, then it is guaranteed to provide near-optimal so-
lutions by performing approximate dynamic programming [42].

III. CASE STUDY: STATCOM IN A MULTIMACHINE

POWER SYSTEM

Fig. 1 illustrates the schematic diagram of the 12-bus bench-
mark power system with a STATCOM. The power system is
a 12-bus three-generator network designed for evaluating the
effects of flexible AC transmission system (FACTS) devices at
the transmission level [43]. The original system has low volt-
ages at buses 4 and 5. Preliminary simulation results by the
authors showed that installing a STATCOM at bus 4 can drasti-
cally improve the voltage profile of the whole network [44]. The
STATCOM is controlled by two so-called internal PI controllers,
one for regulating the line voltage (PIV ) and the other for regu-
lating the dc link voltage (PIdc). The details of the STATCOM
PI controllers have been discussed in [37].

Fig. 1. Schematic diagram of the 12-bus power system with a STATCOM.

A. STATCOM External Control

The STATCOM is a shunt connected FACTS device that can
control the voltage and/or the reactive power exchange with the
network at the point of connection to the power system, i.e., the
point of common coupling (PCC) [45]. In addition to regulat-
ing the voltage and/or power during the steady-state conditions,
with the proper control structure, the STATCOM is capable of
improving the damping of the power system during dynamic
and transient disturbances [45], [46]. This can be achieved by
providing an additional external control loop that sends an aux-
iliary control signal to the STATCOM in order to control it from
a supervisory level.

Most of these proposed external controllers employ a linear
control scheme in the form of a simple proportional gain or a PI
controller [45]–[47]. However, the efficacy of the linear external
controller can be largely affected by a change in the operating
conditions of the power system or its topology. The situation
can be worsened as the complexities of the power system to
which the STATCOM is connected increase. In an earlier work
in [37], the authors showed that a linear controller fine-tuned at
a certain operating condition is not able to effectively damp out
the oscillations in the power system.

B. Proposed External Controller

The external controller proposed in this paper provides an
auxiliary control signal ∆Vref for the line voltage controller
(PIV ) reference signal (Fig. 1). The control objective of the
external controller is to provide additional damping for the two
generators neighboring the STATCOM, i.e., generators 3 and
4. In order to achieve this, the controller uses the rotor speed
measurements of generators 3 and 4 as inputs and provides an
output that positively damps both generators. Generator 2 is
close to the infinite bus, and the simulation results indicate that
it is not significantly affected by the STATCOM.

Generators 3 and 4 have inertia constants of 3.0 and
5.0 MW·s/MVA, respectively, which result in the local swings
with frequencies of approximately 1 Hz for generator 3 and 0.8
Hz for generator 4. The fact that generators 3 and 4 oscillate at
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Fig. 2. Schematic diagram of the neurofuzzy external controller.

different frequencies complicates the external control scheme,
and makes a linear controller less effective [37], since the aux-
iliary control signal ∆Vref that is suitable to damp generator 3,
for example, might at times exacerbate the dynamic oscillations
of the rotor of generator 4 and vice versa.

This problem can be solved by using an intelligent external
control scheme, in which this controller exerts a control action
while watching its effect on the overall performance of the power
system. An ACD-based neurofuzzy controller is an excellent
candidate for such a control scheme because of the following.

1) The relatively low number of inputs and outputs allows the
creation of an effective fuzzy rule base for the controller.

2) Introduction of neural networks enables the controller to
perform in a near-optimal way by evaluating the effects of
its control actions on the response of the power system,
and updating the controller parameters accordingly.

In a typical neurofuzzy system, the parameters of the fuzzy
controller, such as the fuzzy set membership functions and the
consequent rules, are considered the synaptic weights of a con-
nectionist learning system. Neural-network-based learning tech-
niques are then applied in order to adjust these parameters based
on the performance of the system. Fig. 2 illustrates the schematic
diagram of the neurofuzzy controller for the STATCOM [6],
with the fuzzy membership functions and the fuzzy Min/Max
operators as the nonlinear activation functions of the neurons.

IV. ACD NEUROFUZZY EXTERNAL CONTROLLER STRUCTURE

Fig. 3 shows the schematic diagram of the proposed ACD-
based neurofuzzy external controller for the STATCOM. The
entire system of Figs. 1–3 is simulated in the power system
computer aided design/electromagnetic transients program for
dc (PSCAD/EMTDC) environment. A simulation step size of
50 µs is selected, while the sampling time for training the ex-
ternal controller is 2.0 ms (500 Hz).

The plant in Fig. 3 consists of the multimachine power system
in Fig. 1, the STATCOM, and the PIdc controller. The input to
the plant is the modulation index ma generated by the PIV con-
troller; and its output X(t) is the vector of the speed deviations
of generators 3 and 4. The proposed external controller consists
of two main components: the neurofuzzy controller (Fig. 2) and

Fig. 3. Schematic diagram of the STATCOM ACD-based neurofuzzy external
controller.

TABLE II
NEUROFUZZY CONTROLLER RULE BASE

a critic neural network, which is trained to approximate the
cost-to-go function J (Fig. 3).

A. Neurofuzzy Controller

The heart of the neurofuzzy controller is the fuzzy inference
system. A zero-order Takagi–Sugeno fuzzy model, which is a
special case of the Mamdani model [6], is used for implementing
the controller. The input to the neurofuzzy controller is the vector
of the selected states of the power system as in (2):

X(t) = [∆ω3(t),∆ω4(t)]T . (2)

The controller, in return, generates a control signal ∆Vref ,
which is added to the line voltage reference of the local PIV
controller (Fig. 1). At steady state, the PIV has a line voltage
reference of 1.0 per unit (p.u.). Therefore, the output of the
neurofuzzy controller is clamped at ±0.05 p.u., such that the
voltage at bus 4 does not fall outside the acceptable range of
[0.95, 1.05] p.u.

Five membership functions are considered in Fig. 2 for the
rotor speed deviations of each generator, which are associated
with the fuzzy terms negative big, negative small, zero, posi-
tive small, and positive big, while the output variable ∆Vref has
seven fuzzy membership functions associated with it, namely
negative big, negative medium, negative small, zero, positive
small, positive medium, and positive big. These fuzzy sets gen-
erate a rule base with 25 rules for the neurofuzzy controller, as
shown in Table II.

Gaussian membership functions are used for each fuzzy input
variable. The membership degree of variable x in the fuzzy set
Aj can be expressed as

µAj
(x) = exp

[
−1

2

(
x − mj

σj

)2
]

(3)

where mj and σj are the corresponding center and the width
of the fuzzy set, respectively. Singleton fuzzy sets are assigned
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Fig. 4. Fuzzy inference mechanism used for the neurofuzzy controller.

to the fuzzy output variable, where the membership degree at a
certain singleton point zk is unity, but zero otherwise:

µzk
(z) =

{
1, z = zk

0, otherwise.
(4)

In general, for the multi-input–single-output (MISO) con-
troller designed in this paper, each fuzzy rule can be expressed
as follows:

If ∆ω3 is Ai and If ∆ω4 is Bj Then ∆Vref is zk .

The zero-order Takagi–Sugeno fuzzy model is used for the
fuzzy inference mechanism. The Min function is used for the
fuzzy AND operator (Fig. 4).

The final crisp output of the controller is derived using the
centroid defuzzifier [4]. Therefore, the output of the controller
can be expressed as

∆Vref (t) =
∑

n wnzn∑
n wn

(5)

where wn is the firing strength of the nth rule and zn is the value
of the antecedent corresponding to the nth rule.

B. Critic Network

The parameters of the neurofuzzy controller are derived in
such a way that it performs well over a range of operating con-
ditions and during different faults. This is also partly ensured
by the inherent robustness of the fuzzy controller. However, the
performance is still far from optimal, and therefore, the con-
troller is further trained so that it can perform optimal control of
the plant over the time horizon of the problem. For this purpose,
a critic network is trained to learn the cost-to-go function J
associated with the power system. In other words, it evaluates
how well the neurofuzzy controller is doing from moment to
moment. Once sufficiently trained, the critic network can, in
turn, provide the appropriate training signal for the controller.

The utility function for the critic network comprises two terms
(decomposed utility function):

U(t) = U1(t) + U2(t) (6)

where

U1(t) = |∆ω3(t) + ∆ω3(t − 1) + ∆ω3(t − 2)| (7)

U2(t) = |∆ω4(t) + ∆ω4(t − 1) + ∆ω4(t − 2)|. (8)

Fig. 5. Schematic diagram of the critic network.

The two terms are necessary because the rotors of generators
3 and 4 have different swings, and therefore, the STATCOM
should try to improve the performance of both generators at
the same time. The cost-to-go function estimated by the critic
network is

J(t) =
∞∑

i=0

γiU(t + i). (9)

This can be further simplified as

J(t) =
∞∑

i=0

(
2∑

k=1

γiUk (t + i)

)
=

2∑
k=1

Jk (t). (10)

Two subcritic networks are therefore used, where each one
learns one part of the cost-to-go function. Utility function de-
composition speeds up the process of critic network learning
since each subcritic is estimating a simpler function [48]. Fig. 5
shows the schematic diagram of the critic network. It consists of
two separate multilayer perceptron (MLP) neural networks [49],
with ten neurons in the hidden layer of each one and the same
input from the action network, i.e., the neurofuzzy controller.
The hyperbolic tangent is used as the activation function of the
hidden neurons.

V. NEUROFUZZY CONTROLLER TRAINING

A. Critic Network Training

Forced perturbation is applied initially to the plant for a period
of time in order to train the critic network. During this stage,
pseudorandom binary signal (PRBS) disturbances are added to
the STATCOM voltage reference Vref from an external source
(switches S1 and S2 in Fig. 6 are in position 1). The PRBS
disturbance applied to the system should be generated in such a
way that it excites the natural frequencies of the power system.
The frequency of the PRBS disturbance is therefore heuristically
chosen as a combination of 0.5, 1, and 2 Hz, close to the natural
frequencies of the power system, with the total PRBS signal
magnitude limited to ±5% of the value of Vref at steady state.
The neurofuzzy controller tries to force the plant to follow the
reference by generating the appropriate control signal for the
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Fig. 6. Training the neurofuzzy controller.

STATCOM. The resultant deviations in the values of the power
system states in (2), along with ∆Vref , are now fed into the
critic network, which goes through backpropagation training to
update its synaptic weight matrices [37].

The critic network training starts with a low discount factor of
0.2, which is gradually increased to 0.8 as the training proceeds.
This will help the weights of the critic network converge faster.
Moreover, an annealing learning rate scheme is used in which
the critic network training starts with a learning rate of about
0.1, and gradually decreases to a value of 0.005. This ensures
that during the initial training stages, the critic network adapts
itself to the plant dynamics quickly, but as the learning process
continues, the network does not have drastic reactions to sudden
changes in the plant dynamics. In this way, the critic network
does not forget the previously learned information. This training
procedure is repeated at various operating conditions until a
reasonable accuracy is achieved.

B. Neurofuzzy Controller Training

In order for the neurofuzzy controller to be able to minimize
the cost-to-go function over the infinite horizon of the problem,
it should be trained with the following error signal:

e(t) = J∗(t) − J(t) (11)

where J∗(t) is the desired value for the cost-to-go function,
which, in the case of dealing with deviation signals, is zero. The
mean-squared error function in (12) is used as the error function
for executing the backpropagation algorithm:

E(t) =
1
2
× e2(t). (12)

A gradient descent learning algorithm is applied for adjusting
the parameters of the neurofuzzy controller. The parameters that
are being adjusted by the critic network are:

1) the consequent variables, i.e., the singleton parameters zk ;
2) the centers and widths of the antecedent fuzzy sets for the

input variables, i.e., mj and σj .
Each parameter is updated in the negative direction of the

gradient of the objective function E(t). For any evolvable

parameter p:

p(t + 1) = p(t) − η
∆E(t)
∆p(t)

(13)

where η is the learning rate parameter. Since implementing and
training the controller is done in discrete time, difference equa-
tions are used to indicate the change in the value of a signal from
one sampling time to another. For the typical parameter/signal
v(t), this change is defined as

∆v(t) = v(t) − v(t − 1) (14)

where (t − 1) refers to one time step ago, which, in this study,
is considered to be 2.0 ms before the present time t.

After conducting several simulations, it was noticed that the
best performance was achieved when η is considered to be 0.02
and 0.15 for the output parameters and the antecedent fuzzy
sets, respectively. However, in order to ensure the stability of
the controller, a mechanism is used in this study that momentar-
ily limits the aforementioned learning rate parameters to very
small numbers if the magnitude of the training signal, i.e., the
rate of change in the error function with respect to the change
in parameter p, exceeds a user-defined threshold. In this way,
the parameters of the controller are prevented from changing
drastically due to a large training signal. The partial derivative
of the objective function with respect to any parameter can be
derived using the following chain rule:

∆E(t)
∆p(t)

=
∆E(t)
∆J(t)

× ∆J(t)
∆[∆Vref (t)]

× ∆[∆Vref (t)]
∆p(t)

. (15)

The first term on the right-hand side of (15) is equal to J(t)
and the second term can be derived by backpropagating constant
1.0 through the critic network [50]. The last term in (15) denotes
the sensitivity of the controller output to any of the evolvable
parameters p. The equations are provided in Appendix A.

The ACD neurofuzzy controller is trained by the cost-to-go
function defined in (9) using the update formula in (13) and
(15), so that its output coefficients are adjusted for optimum
performance. The controller is trained online during the actual
performance of the power system. Various faults and distur-
bances are applied to the power network, and the resultant error
signal derived in (11) is used for updating the parameters of the
neurofuzzy controller.

VI. SIMULATION RESULTS

A. Training Results

The fuzzy membership sets are initialized using trial and
error based on the performance of the controller during different
disturbances. The controller is then trained at different operating
conditions when the power system is exposed to various faults
and disturbances. Figs. 7 and 8 compare the membership sets for
the input variables ∆ω3 and ∆ω4 before and after the training.
The results clearly indicate that some of the sets have been
drastically changed, compared to the original settings derived
by a human expert.
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Fig. 7. Antecedent fuzzy sets for speed deviations of generator 3. (a) Before
the training. (b) After the training.

Fig. 8. Antecedent fuzzy sets for speed deviations of generator 4 (a) before
and (b) after the training.

B. Testing Results

Several tests are now carried out in order to evaluate the ef-
fectiveness of the proposed neurofuzzy external controller and
compare its performance (with full updating and partial up-
dating) with the case where the STATCOM has no external
controller (uncompensated system). During the faults and dis-
turbances applied to the power system, the objective of the
STATCOM external controller is to damp out the rotor speed
deviations of the two generators quickly and effectively, and to
achieve this with the least amount of additional reactive power
injection to the power system with respect to the steady-state
conditions.

1) Case Study 1: Transmission Lines 2–5 Switched ON/OFF:
In the first test, the transmission line connecting buses 2 and
5 is disconnected and is then switched back into the power
system after 3 s. Fig. 9 shows the superiority of the proposed
neurofuzzy external controller in damping out the rotor speed
deviations quickly. It also shows that the neurofuzzy with full
update slightly improves the damping, compared to the con-
troller with partial update. However, the improvement is more

Fig. 9. Rotor-speed deviations of generator 4 during Case Study 1.

Fig. 10. Reactive power injected by the STATCOM during Case Study 1.

apparent in terms of the control effort provided by the STAT-
COM. Fig. 10 shows that the STATCOM equipped with a
neurofuzzy controller with fully evolvable parameters reduces
the peak reactive power injected by the STATCOM by 17 and
54 MVar, compared to the controller with partial update and the
uncompensated system, respectively. This leads to major sav-
ings in the capital investment of the FACTS device. For more
related information and an economic cost analysis, the reader is
referred to [37].

2) Case Study 2: Short-Circuit Midway Along the Trans-
mission Lines 4–6: A 100-ms three-phase short-circuit is now
applied midway along the transmission line connecting buses
4 and 6. The line is disconnected after the fault is cleared.
Fig. 11 illustrates the effectiveness of the fully evolvable neuro-
fuzzy controller, compared to the controller with partial update,
in restoring the system back to the steady-state condition. It
shows that the uncompensated system is not able to damp out
the oscillations effectively. Fig. 12 illustrates the active power
flow through the transmission line connecting buses 7 and 8,
and emphasizes the fact that the STATCOM, controlled by the
fully evolvable neurofuzzy controller, damps out the power
oscillations with smaller magnitude. Simulation results also
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Fig. 11. Rotor-speed deviations of generator 3 during Case Study 2.

Fig. 12. Active power through the transmission lines 7 and 8 during Case
Study 2.

indicate that the neurofuzzy controller, with full update, lim-
its the reactive power injected by the STATCOM to 462 MVar,
whereas the partially updated controller and the uncompensated
power system force the STATCOM to inject 474 and 468 MVar,
respectively.

Although the STATCOM external control scheme proposed
in this paper is effective in damping out the line active power
flow and the generator speed oscillations during disturbances,
it causes temporary voltage deviations at the network buses,
specifically at bus 4 where the STATCOM is connected. How-
ever, during large scale disturbances, maintaining system stabil-
ity and improving the power system damping is normally a high
priority, and as long as the voltage fluctuations that occur for a
short duration of time are within the acceptable range of [0.95,
1.05] p.u., there can be a tradeoff between the rotor speed and
the line voltage.

Examples of deliberately changing the line voltage reference
(or the reactive power reference) of a shunt FACTS device dur-
ing transient and dynamic disturbances have been shown for a
STATCOM in [45] and [46], and for a static var compensator
(SVC) in [52].

Fig. 13. Rotor-speed deviations of generator 4 during Case Study 3.

Fig. 14. Reactive power injected by the STATCOM during Case Study 3.

3) Case Study 3: Short-Circuit Midway Along the Transmis-
sion Lines 3 and 4: With the transmission lines 4–6 recon-
nected, a 100-ms three-phase short-circuit is now applied to the
middle of one of the parallel transmission lines connecting the
STATCOM to generator 3. The line is disconnected as a result
of the fault. Figs. 13 and 14 show the effectiveness of the pro-
posed neurofuzzy controller with full update in damping out the
rotor speed oscillations with the least amount of reactive power
injection.

It should be noted that during the normal steady-state opera-
tion of the power system, the STATCOM already injects about
290 MVar in order to maintain the desired voltage profile across
the power system. It is normally customary for a STATCOM to
have a safety margin in terms of reactive power so that it is able
to respond to different loading conditions and/or disturbances.
Clearly, the amount of this safety margin is case dependent and
is decided by the design engineers. The main objective of this pa-
per is to show that an intelligently controlled STATCOM with a
fully evolvable controller is able to use less reactive power from
the device’s safety margin in order to respond to different faults
and improve the dynamic stability of the system.
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TABLE III
PERFORMANCE INDEXES OF THE STATCOM NEUROFUZZY CONTROLLERS

C. Performance Measurement

In this section, the performance of the neurofuzzy external
controller with full and partial update is compared with the
uncompensated power system. A performance index is defined
for each case study 1–3 as in (16):

PIi =


 4∑

j=2




√√√√ 1
N

N∑
k=1

∆ω2
j,k







−1

+ k × ∆QPeak (16)

where ∆ωj,k represents the kth sample of the rotor speed devi-
ations of the jth generator, index i represents the ith case study,
and ∆Qpeak is the amount of increase/decrease in the maximum
value of the reactive power injected by the STATCOM with re-
spect to the uncompensated power system. Clearly, in the case
of the uncompensated system, the second term in (16) is zero.
A coefficient k is considered to normalize ∆Qpeak . When Q is
given in MVar, the coefficient k is considered to be 0.01 in this
paper.

During each fault/disturbance applied to the system, 100 sam-
ples (N ) are taken from each rotor speed during the first 10 s
of simulation. The overall performance index of each controller
is derived according to the performance indexes PIi , obtained
from various case studies, as in (17):

PI =

(∑
i

1
PIi

)−1

. (17)

Table III summarizes the results. In the last row of the table,
the overall performance indexes are normalized based on the
overall performance index of the uncompensated power system.
This shows that the neurofuzzy controller with fully updated
parameters improves the performance of the power system by
almost 88% during large-scale disturbances. Also, by updating
the parameters of the antecedent fuzzy sets, the performance of
the controller is improved by almost 33%.

VII. PRACTICAL CONSIDERATIONS

A. Hardware Implementation

The proposed neurofuzzy controller can be implemented on
a DSP board. The authors have reported successful implemen-
tation of a fuzzy controller for a STATCOM in a multimachine
power system [51]. The controller, built on a DSP board, sends
the control signals to the power system that is implemented on
a real-time digital simulator (RTDS).

It should be noted that the two controllers with partial up-
dating and full updating schemes are trained only once using
the data available on the system. This distinguishes them from
an adaptive scheme that would undergo training all the time.
Therefore, the increased computational complexities should not
pose a problem due to the nature of the design.

B. Real-Time Development of Neurofuzzy Controller

Essentially, the training process of the fuzzy system is of the
greatest importance and delicacy. This is due to the fact that the
training stages of the critic network can be conducted offline;
however, the training process of the fuzzy controller should be
executed while it is controlling the plant.

In a real power system, applying disturbances for training
the neurofuzzy controller might not be desirable or practical.
In such cases, training data can be obtained from the normal
operation of the power system, as the network is exposed to
natural changes to its operating condition and/or configuration,
as well as possible large-scale faults. Clearly, the critic network
should be trained first. Once its weights have converged, the
fuzzy controller can undergo training. In this way, the controller
parameters will take a longer time to converge, but this will
not cause any problems for the power system because of the
following reasons.

1) The initial parameters of the fuzzy controller (the mem-
bership functions and the consequent parameters) are de-
rived in a way that it stabilizes the power system. In the
worst case, the fuzzy controller acts as a nonlinear gain
scheduling controller that is yet more effective than a PI
controller.

2) A critic network with its weights converged is guaranteed
to provide optimal training signals for the controller [42].

It is possible in this case to define an adaptive learning
rate parameter for the controller, which is increased when a
change occurs in the value of its inputs and has a small value
when the input values are almost constant. This prevents the
controller weights/parameters from forgetting the previously
learned information.

C. Installment Cost

Implementing a neurofuzzy controller like the one proposed
in this paper requires a larger amount of capital investment
compared to a PI controller. However, it should be noted that
the installment cost of a DSP-based neurofuzzy controller for
a STATCOM is negligible compared to the capital investment
required for the FACTS device itself.
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Moreover, the neurofuzzy controller improves the overall per-
formance of the system by reducing the amount of reactive
power injected by the STATCOM, which in turn reduces the
ratings of the inverter switches and hence, its cost.

D. Online Versus Offline Training

Stability and flexibility of the connectionist systems are the
most important issues that need to be addressed during the de-
sign process. The system should be stable enough to remember
the previously learned information, yet flexible enough to ac-
cept new information if the operating conditions of the system
fall outside the range in which it has been trained before. Failing
to simultaneously achieve both these qualities will result in a
suboptimal performance.

While an offline training scheme is not flexible enough to
learn newly obtained information, an online training scheme
might cause the controller to forget the information it has already
learned, specifically if the controller stays at a different operating
condition for a long time, something that happens often in power
systems.

In order to solve this issue, a quasi-online training scheme is
considered in this paper, where during the final operation of the
controller, the error signals corresponding to all the evolvable
parameters are continuously observed, and the parameters that
show the worst performance (highest error) in a window of
1 s are updated using a batch-mode backpropagation algorithm.
Only one parameter from each subset (fuzzy set mean, fuzzy set
variance, and fuzzy output variables) is selected for update.

If the MSE, defined as in (18), is larger than a threshold value,
then the parameters with the worst performance will be updated
according to (19):

MSE =
1
N

N∑
i=1

∣∣∣∣∣
(

∆E

∆p

)
i

∣∣∣∣∣
2

(18)

p(t + 1) = p(t) − η

N

N∑
i=1

(
∆E

∆p

)
i

(19)

where N is the number of data samples in a window of 1 s.

VIII. CONCLUSION

An evolvable neurofuzzy controller was designed in this pa-
per based on the connectionist systems theory. The parameters
of the controller, i.e., the antecedent fuzzy sets and the con-
sequent (output) parameters, were updated in order to be able
to provide near-optimal control over the infinite horizon of the
problem. The proposed controller was designed for supervisory
level control of a STATCOM in a multimachine power system.
This control application was intentionally chosen since it por-
trays a nonlinear nonstationary system in the presence of noise
and uncertainties.

Using adaptive critic designs theory, the neurofuzzy controller
is able to provide nonlinear near-optimal control with no need of
any mathematical model of the power system or the STATCOM.
Reinforcement learning is applied for training the external con-
troller, which makes the design methodology largely insensitive
to the size of the power system.

Simulation results have been provided to indicate that the
proposed neurofuzzy external controller is effective in improv-
ing the overall power system damping. The effectiveness of
the controller is further improved when it undergoes a full up-
date scheme compared to a partial update scheme. Moreover, it
achieves this with smaller amounts of reactive power injected
by the STATCOM as a result of the faults, which in turn could
lead to a smaller STATCOM size, and therefore, savings in the
cost of the FACTS device if it were to have a secondary function
of providing system damping.

APPENDIX A

SENSITIVITY ANALYSIS OF THE FUZZY CONTROLLER

In this section, equations are provided for the sensitivity anal-
ysis of the fuzzy controller output with respect to different pa-
rameters of the controller. These values should be used in the
update equation in (15).

A. Consequent (Output) Variables

Using (5), the derivative of the controller output with respect
to the output parameters can be expressed as

∆[∆Vref (t)]
∆zk (t)

=
wk∑
n wn

. (20)

B. Input Membership Functions

Assuming that the membership functions are defined as in
(3), the sensitivity of the output to each of the parameters of the
jth antecedent membership function can be expressed as

∆[∆Vref (t)]
∆µj (x)

=
∆ (

∑
n wn × zn/

∑
n wn )

∆µj (x)
(21)

which can be expanded as

∆[∆Vref (t)]
∆µj (x)

=
[∑(

zn × ∆wn

∆µj (x)

)
×

∑
wn

−
(∑

wn×zn

)
×

∑ ∆wn

∆µj (x)

]/(∑
wn

)2

(22)

and hence

∆[∆Vref (t)]
∆µj (x)

=
[∑ (

zn × ∆wn

∆µj (x)

)]/ (∑
wn

)

−
[∑ ∆wn

∆µj (x)
× ∆Vref (t)

]/ (∑
wn

)
(23)

which can again be simplified as

∆[∆Vref (t)]
∆µj (x)

=
∑

((∆wn/∆µj (x)) × (zn − ∆Vref (t)))∑
wn

.

(24)
Obviously, if the consequence of the nth fuzzy rule does not

depend on the membership set µj , then the sensitivity of the rule
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firing strength wn with respect to that set will be zero. Moreover,
since the min function is used for fuzzy AND, the sensitivity of
wn with respect to µj is equal to 1 if and only if for a certain
input u, wn = µj (u), and is zero otherwise.

After the sensitivity of the output signal with respect to the
fuzzy set µj is calculated, its sensitivity to each of the parameters
of the set can be derived as

∆[∆Vref (t)]
∆mj (t)

=
∆[∆Vref (t)]

∆µj (x)
× ∆µj (x)

∆mj (t)
(25)

which can be simplified as

∆[∆Vref (t)]
∆mj (t)

=
∆[∆Vref (t)]

∆µj (x)
× (x − mj (t))

σ2
j (t)

× µj (x) (26)

and similarly

∆[∆Vref (t)]
∆σj (t)

=
∆[∆Vref (t)]

∆µj (x)
× (x − mj (t))2

σ3
j (t)

× µj (x).

(27)
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