Coupled electrical and magnetic properties in (La,Sr)FeO$_3$-δ

X.-D. Zhou
University of Missouri--Rolla

Qingsheng Cai

Jinbo Yang

M. S. Kim

William B. Yelon
Missouri University of Science and Technology, yelonw@mst.edu

See next page for additional authors

Follow this and additional works at: http://scholarsmine.mst.edu/faculty_work

Part of the [Chemistry Commons](http://scholarsmine.mst.edu/faculty_work), and the [Materials Science and Engineering Commons](http://scholarsmine.mst.edu/faculty_work)

Recommended Citation

Zhou, X.-D.; Cai, Qingsheng; Yang, Jinbo; Kim, M. S.; Yelon, William B.; Shin, Y.-W.; Scarfino, B. J.; Anderson, Harlan U.; and James, William Joseph, "Coupled electrical and magnetic properties in (La,Sr)FeO$_3$-δ" (2005). Faculty Research & Creative Works. Paper 1548.
http://scholarsmine.mst.edu/faculty_work/1548

This Article is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. For more information, please contact weaverjr@mst.edu.
Coupled electrical and magnetic properties in \((\text{La}, \text{Sr})\text{FeO}_3-\delta\)

X.-D. Zhoua)

\textit{Department of Materials Science and Engineering, Electronic Materials Applied Research Center, University of Missouri-Rolla, Rolla, Missouri 65401}

Q. Cai

\textit{Department of Physics, University of Missouri-Columbia, Columbia, Missouri 65211}

J. Yang, M. Kim, W. B. Yelon, and W. J. James

\textit{Graduate Center for Materials Research, Department of Physics and Chemistry, University of Missouri-Rolla, Rolla, Missouri 65401}

Y.-W. Shin, B. J. Scarfino, and H. U. Anderson

\textit{Department of Materials Science and Engineering, Electronic Materials Applied Research Center, University of Missouri-Rolla, Rolla, Missouri 65401}

(Presented on 10 November 2004; published online 4 May 2005)

This article is aimed at studying the temperature dependence oxygen nonstoichiometry, magnetic moments, Fe3+ fraction, Néel temperature and conductivity of \((\text{La}, \text{Sr})\text{FeO}_3-\delta\). It is found that the magnetic properties in \(\text{La}_{0.60}\text{Sr}_{0.40}\text{FeO}_3-\delta\) is determined by Fe3+ and its concentration, and the conductance is resulted from Fe4+ ions, which act as electron holes. Both of magnetic and electrical properties were directly governed by oxygen nonstoichiometry \((\delta)\). When \(\delta=0.2\), the compound has maximum Fe3+, the saturation magnetic moments and Néel temperature are 3.8 \(\mu\text{B}\) and 410 °C, both at the highest level, whereas the total carrier concentration is at the minimum. © 2005 American Institute of Physics. [DOI: 10.1063/1.1860911]

I. INTRODUCTION

Interest in the coupling between transport and magnetic properties has been stimulated by a variety of applications, such as colossal magnetoresistance (CMR),1 high temperature superconductivity,2 and spintronics.3 This coupling is ubiquitous in the hole doped perovskite type oxides with general composition \(A'_{1-x}A''_x\text{BO}_3-\delta\), where \(A'\) is the rare earth cation (valence state 3\(+\)), \(A''\) is alkaline earth cation (valence state 2\(+\)), and \(B\) is a multivalent transition metal cation, such as Cr, Mn, and Fe.4 These materials are being used as interconnects,5 oxygen separation membranes,6 electrodes for solid oxide fuel cells,7 and magnetohydrodynamic power generators.8 The magnetic ordering is thought to arise from a superexchange interaction between the 3\textit{d} orbital of transition metal ions and the 2\textit{p} orbital of oxygen ions. Therefore, the magnetic moments will be mainly determined by unpaired 3\textit{d} electrons on the transition metal ions. This is influenced by oxygen occupancy and Sr content in these compounds, as well as the electron neutrality principle. It is well-known that both the electrical and magnetic properties of \(\text{La}_{1-x}\text{Sr}_x\text{FeO}_3\) are very sensitive to Sr-doping levels: For instance, the Néel temperature decreases with increasing Sr content \((x)\). The oxygen nonstoichiometry in \(\text{La}_{1-x}\text{Sr}_x\text{FeO}_3-\delta\) (LSF) was found to play an important role in the magnetic structure of samples quenched from various gas atmospheres.4,5 Moreover, Fe valency and oxygen vacancies are of particular importance in transport properties (both electrical and ionic) of LSF. It is the intent of this article to correlate both the magnetic and electrical properties of \(\text{La}_{1-x}\text{Sr}_x\text{FeO}_3-\delta\) with the Fe valency and oxygen vacancies, with an emphasis on the properties as a function of temperature by using in situ Mössbauer spectrometry, impedance spectroscopy, and neutron diffraction.

II. EXPERIMENTAL

The modified Pechini method was used to synthesize nanocrystalline particles, followed by calcining, uniaxial pressing and sintering. A four-point-probe technique was used to measure electrical resistance on the rectangular samples \((2.00 \times 0.20 \times 0.20 \text{ cm}^3)\) in the temperature range 150–1000 °C and oxygen activity in the range from \(10^{-14}\) Pa to \(10^5\) Pa. Thermoelectrical power was measured on a similar rectangular sample. The potential difference \((\Delta V)\) across the sample was obtained as a function of temperature gradient \((\Delta T)\). The slope of a plot of \(\Delta V\) vs. \(\Delta T\) represents the apparent Seebeck coefficient, which was corrected by considering absolute thermopower for platinum to yield the Seebeck coefficient of the sample. Neutron diffraction was performed at room temperature on the sintered and quenched specimens. The quenching temperature was in the range between 700 and 1500 °C. Rietveld refinement was carried out using FULLPROF code, which permits both multiphase and magnetic structure refinements. A conventional constant acceleration system was used to measure Mössbauer spectra with control over both the temperature and oxygen activity, with \(^{57}\text{Co}\) as the source. The spectrometer was calibrated by using \(\alpha\)-Fe at room temperature.

a)Electronic mail: zhou@umr.edu
Saturation magnetic moments as a function of fraction of Fe³⁺ (over total Fe concentration) are shown in Fig. 1. A datum of ~3.8 μB for the LaFeO₃ refined from neutron diffraction, in which all Fe ions are in the 3+ state, is included. The fraction of Fe³⁺ was directly determined independently from the Mössbauer spectra and from measured oxygen occupancy. The oxygen occupancy was determined from refinements of the neutron diffraction data. From the charge neutrality principle, Fe is in the 3+ valence state for LSF, whereas for LSF the Fe sites are thought to arise from the superexchange interaction between Fe³⁺ ions. If the saturation magnetic moment has also been determined by Rietveld refinement can provide a direct determination of the Fe⁺⁺ fraction of Fe³⁺ and thus can be used to indirectly determine the magnetic moment for La₀.₆₀ Sr₀.₄₀ FeO₃⁻. The magnetic ordering in LSF is dominated by the antiferromagnetic Fe³⁺ ions. Information on multivalent Fe site cations and valency distribution can contribute to understanding conduction mechanisms in p type perovskite family oxides. At high temperature, LSF will lose oxygen to form oxygen vacancies, at the cost of decreasing hole concentration. This reaction can be represented in Kröger–Vink notation as: 2FeFe³⁺ + O₂ → 1/2O²⁻ + 2FeFe²⁺ + V⁰, where FeFe³⁺ represents Fe ions in the 4+ valence state (similar to holes), FeFe²⁺ indicates Fe ions in 3+, and V⁰ represents the oxygen vacancy. Thus, the hole conductivity (σ) follows σ = Nμq, where μ is the mobility, q is the carrier charge, and N is the hole concentration (Fe⁴⁺). Because of the much higher mobility of the electrons or holes than that of oxygen ions, the total conductivity in ferrites is dominated by hole conduction. The carrier concentration can be directly determined from the measurements of Seebeck coefficient (Q). Figure 2 shows the plots of carrier density calculated from Fe⁴⁺ concentration, which is determined from the Seebeck coefficient and Fe⁴⁺ fraction in the system.

One would expect that a p–n transition occurs when the FeFe⁴⁺ concentration (functioning as holes) further decreases, and the average Fe valence drops below 3+, generating electron carriers. Theoretically, both increasing temperature and decreasing oxygen activity can drive this transition. However, resistivity measurements at 1600 °C are extremely difficult to perform. Therefore, we studied this phenomenon by decreasing oxygen activity (from 10⁵ to 10⁻¹³ Pa) at 1000 °C. Figure 3 illustrates this transition. In the pO₂ region from 10⁵ to 10⁻¹³ Pa, the total isothermal conductivity decreases due to decrease of FeFe⁴⁺ (hole) concentration as a result of generation of oxygen vacancies. At the minimum
conductivity, Mössbauer data on quenched samples show nearly all Fe cations are in 3+ valence state and oxygen occupancy, 2.8, in agreement with the neutron results. Further decreasing oxygen activity increases the Fe 2+ concentration, which functions as electrons. Thus, conductivity (n type) increases when $pO_2 < 10^{-9}$ Pa (shown in Fig. 3).

IV. CONCLUSIONS

Oxygen deficiency is nearly zero in the unquenched specimen; therefore, the fraction of Fe$^{4+}$ is 40%, which results in a rather low Néel temperature ($T_N \sim 30$ °C and a small room temperature moment ($\sim 1.3 \mu_B$) because the exchange interactions in this system are expected to be dominated by the Fe$^{3+}$–Fe$^{3+}$ interactions. T_N increases to ~ 410 °C for the specimen quenched from 1500 °C, which possesses a composition of La$_{0.60}$Sr$_{0.40}$FeO$_{2.8}$ and a saturation moment of 3.8μ_B. When the composition reaches La$_{0.60}$Sr$_{0.40}$FeO$_{2.8}$, it is expected that the system will reach its maximum average moment. Beyond this point Fe$^{2+}$ is expected to appear, also with a smaller moment than Fe$^{3+}$, and the room temperature moment would then be expected to decrease, which indeed was observed in this study. Moreover, this point also corresponds to a $p-n$ transport transition in this system since Fe$^{2+}$ acts as a donor and therefore the system changes from a p type conductor to an n type conductor.

ACKNOWLEDGMENT

We thank the support from Department of Energy under contracts of DE-FC26-02NT41563 and UAF99-0038.