Magnetic And Thermal Properties Of Pr in La$_{1-x}$Pr$_x$BaCaCu$_3$O$_7$ system with 0.0

Rajvir Singh
S. Uma
E. Gmelin
William B. Yelon
Missouri University of Science and Technology, yelonw@mst.edu

V. P. S. Awana

See next page for additional authors
Author

This article - conference proceedings is available at Scholars' Mine: http://scholarsmine.mst.edu/faculty_work/1452
GS-01. THE Re-DOPED HIGH T_c SUPERCONDUCTOR HgBa2Ca2Cu3O7: MAGNETIC IMVERSIBILITY VERSUS ANISOTROPY. L. Fábrega, B. Martínez, J. Fontcuberta, A. Sin, S. Piñol, and X. Obradors* (Institut de Ciencia de Mater. (CSIC), Campus de la U.A.B., 08193 Bellaterra, Spain)

The copper oxide HgBa2Ca2Cu3O7 is the superconductor with highest T_c (=135K). However, it had not received much attention until very recently, because of its difficult synthesis (requiring high pressure) and its reported high anisotropy. It is well known that superconducting copper oxides with extreme anisotropy have important handicaps for their use in applications, because magnetic flux moves very easily in them, and therefore they are unable to carry high electrical currents, without dissipation, in most of their H-T phase diagram. An important step forward was realized when it was shown1 that the partial substitution of Hg by Re stabilizes the phase, allowing its synthesis without application of high pressure.

Furthermore, this substitution does not lower T_c and rises the irreversibility line of the superconductor, i.e., broadens the non-dissipative region of its H-T phase diagram. These important issues—particularly the last result, which was soon attributed to a decrease of the anisotropy—have awakened the interest for this material. Indeed, from the above considerations the relevance of having a superconductor with very high critical temperature and reduced anisotropy may be clearly presumed. To determine the anisotropic irreversibility line of this superconductor and establish the effect of the Re have become a matter of the greatest interest, and are the object of this paper. We report on magnetic measurements carried out on grain-aligned Re-doped HgBa2Ca2Cu3O7. From these data we extract the anisotropic current criticals of the material. We observe a rise of the irreversibility line, as compared to the unsubstituted superconductor, this effect is accompanied by a marked decrease of the anisotropy. We analyze the origin of magnetic irreversibility as a function of temperature and reduced anisotropy may be clearly presumed. To determine the anisotropic irreversibility line of this superconductor and establish the effect of the Re have become a matter of the greatest interest, and are the object of this paper. We report on magnetic measurements carried out on grain-aligned Re-doped HgBa2Ca2Cu3O7. From these data we extract the anisotropic current criticals of the material. We observe a rise of the irreversibility line, as compared to the unsubstituted superconductor, this effect is accompanied by a marked decrease of the anisotropy. We analyze the origin of magnetic irreversibility as a function of temperature and reduced anisotropy may be clearly presumed.

Finally, we try to assert the effects of Re-doping on these two contributions. Our results indicate that this substitution leads to (i) an enhancement of bulk pinning, due to the anisotropy reduction, and (ii) a possible increase of surface barriers, due to the accompanying metallization of the interlayers. The implications of these features with regard to potential applications of the superconductor will be also addressed.

*Work supported by the Spanish CICYT and CSIC

1Shimoyama et al., Physica C224, 1 (1994).

We have investigated the RSr2Fe2O5 (R=La, Y, Pr, and Gd) materials by several experimental techniques, including X-ray and neutron diffraction, magnetic susceptibility and Mossbauer spectroscopy measurements. All materials studies are single phase and crystallize in the hexagonal perovskite structure. Magnetic susceptibility studies reveal that for R=La and Pr, the Fe ions order antiferromagnetically at about $T_N=190$ K. Short range magnetic correlations are observed up to 250 K. For R=La and Pr, Mossbauer studies reveal two in equivalent magnetic sextets, below 190 K, with the area ratio 2:1. Above T_N one singlet is observed, with an isomer shift value typical to Fe$^{3+}$. Y_{Fe} is extremely sensitive to oxygen concentration.

For R=Y and Gd the magnetization curves do not lend themselves to easy determination of the magnetic transition due to an extra magnetic phase which exists up to 350 K. This phase is a result of deficiency of oxygen. The Mossbauer spectra at 300 K indicates two superimposed singlet lines, and contain a small magnetic sextet. There is no indication that the R sublattice in RSr$_2$Fe$_2$O$_5$ (R=Pr, and Gd) order magnetically down to 1.5 K.

*Research sponsored by: Australian Research Council.

The results on structural aspects, superconductivity, magnet and thermal properties of La$_{1-x}$Pr$_x$BaCaCu$_3$0$_7$ system are to be presented. Both X-ray and neutron diffraction studies reveal that Pr substitutes isosstructurally in the tetragonal LaBaCaCu$_3$0$_7$ (La113) system until the complete replacement of La by Pr. The c-lattice parameter of the substituted system decreases with an increase in x, indicating successful substitution of bigger ion La$^{3+}$ by comparatively smaller Pr$^{3+}$. The superconducting transition temperature, T_c, determined from AC susceptibility measurements decreases with x. The relative T_c depression due to Pr in the LaBaCaCu$_3$0$_7$ superconductor is less in comparison to that found for La$_{1-x}$Pr$_x$BaCaCu$_3$0$_7$; (La113). While the critical concentration of Pr to completely suppress the superconductivity of former is around 70 at.% of Pr at La-site, for the later the same is reported only 30 at.%.

For non-superconducting samples, i.e., for $x=0.70$ and 1.0, possible antiferromagnetic ordering temperature T_N, of 4 K and 8 K, respectively, are observed from both DC magnetic and heat capacity measurements. Interestingly, in La$_{1-x}$Pr$_x$:1113 system the x_c, of Pr is 0.70, with a T_N of 8 K, for La$_{1-x}$Pr$_x$:123 system, while x_c is half the T_N is nearly two times. The related entropy change for $x=1.0$ sample near T_N amounts to $\Delta S=3.5$ J/Mol.K. The results are explained on the basis of distribution of Pr at both RE and Ba sites in the RE1113 structure. This leads to a lower T_N and a less deleterious effect of Pr on the superconductivity of La1113 compared...
The magnetic susceptibility of YBa$_2$Cu$_3$O$_{y}$/SrRu$_3$ (YBCO/SRO) multilayers was measured to study the effects of the layer coupling on the superconducting transition and ferromagnetic order. The YBCO and SRO films were prepared by the pulsed laser ablation. The CaRuO$_3$ thin film reveals a ferromagnetic order at T \sim 160 K while YBCO film is superconducting at T \sim 90 K. The superconducting transition was reduced owing to the presence of the SRO layers. On the other hand, the presence of the YBCO layer effects the ferromagnetic ordering. The results are discussed.

Supported by National Science Council of the Republic under grants NSC86-2112-M002-033 and NSC86-2112-M003-012.

The magnetic susceptibility reveal superconductivity below T_c and no superconductivity in the Pr:123 like system.

*Research sponsored by: Australian Research Council.

GS-04. MAGNETIC PROPERTIES OF YBa$_2$Cu$_3$O$_{y}$/SrRu$_3$ MULTILAYERS. H. C. Yang, C. Y. Lin, L. M. Wang (Natl. Taiwan Univ., Dept. of Phys., Taipei, 106 Taiwan), and H. E. Horng (Nat. Taiwan Normal Univ., Dept. of Phys., Taipei, 117 Taiwan)

The magnetic response of Pb$_x$Sr$_{2-x}$PrCu$_3$O$_{6-y}$ to the applied magnetic field reveals

- GS-06. SYNTHESIS AND TRANSPORT PROPERTIES OF Pr$_{2}$Ba$_{2}$Cu$_{2-x}$O$_{y}$ SINGLE CRYSTALS. Y. I. Yamada1, Akiyuki Matsushita1, Shigeru Hori1, Toshihisa Yeo2, Yanyu Yamada2, and Izumi Hiraibayashi2

- GS-07. SPECIFIC HEAT, MAGNETIZATION AND C-ISOTOPE EFFECT OF Y$_2$C$_2$I$_4$ SUPERCONDUCTORS. Walter Schnelle, Rüdiger W. Henn, Thomas Gulden, and Reinhard K. Kremer (Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany)